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Preface

Today, finding someone who hasn’t heard of ChatGPT, the AI chatbot that 

took the world by storm, is hard. ChatGPT—and its competitors such as 

Google Bard, Microsoft Bing Chat, etc.—are part of a broader area in AI 

known as large language models (LLMs). LLMs are the latest frontier in 

AI, resulting from recent research into natural language processing (NLP) 

and deep learning. However, the immense popularity these applications 

have gained has created some concerns and misconceptions around them 

because of a lack of understanding of what they truly are.

Understanding the concepts behind this new technology, including how 

it evolved, and addressing the misconceptions and genuine concerns around 

it are crucial for us to bring out its full potential. Therefore, this book was 

designed to provide a crucial overall understanding of large language models.

In this book, you will do the following:

• Learn the history of AI and NLP leading up to large 

language models

• Learn the core concepts of NLP that help define LLMs

• Look at the transformer architecture, a turning point in 

NLP research

• See what makes LLMs special

• Understand the architectures of popular LLM applications

• Read about the concerns, threats, misconceptions, and 

opportunities presented by using LLMs

This is not a coding book. However, this book will provide a strong 

foundation for understanding LLMs as you take your first steps toward them.
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CHAPTER 1

Introduction
It was late 2022. Reports were coming in about a new AI that had human- 

like conversational skills and seemingly infinite knowledge. Not only was 

it able to articulate answers to a large number of subject domains such 

as science, technology, history, and philosophy, it was able to elaborate 

on the answers it gave and perform meaningful follow-up conversations 

about them.

This was ChatGPT, a large language model (LLM) chatbot developed 

by OpenAI. ChatGPT has been trained on a massive dataset of both text 

and code, giving it the ability to generate code as well as creative text 

content. Being optimized for conversations, ChatGPT allowed users to 

steer the conversations to generate the desired content by considering the 

succeeding prompts and replies as context.

Because of these capabilities and it being made available to the 

general public, ChatGPT gained immense popularity. It became the 

fastest-growing consumer software application in history. Since release, 

it has been covered by major news outlets, reviewed in both technical 

and nontechnical industries, and even referenced in government 

documents. The amount of interest shown in ChatGPT by the general 

public is something previously unheard of. The availability of it has made 

a substantial impact on many industries both directly and indirectly. 

This has resulted in both enthusiasm and concerns about AI and its 

capabilities.

https://doi.org/10.1007/979-8-8688-0017-7_1
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While being the most popular LLM product, ChatGPT is barely the 

tip of the iceberg when it comes to the capabilities of large language 

models. Ushered in by the advancements of deep learning, natural 

language processing (NLP), and the ever-increasing processing power 

of data processing, LLMs are the bleeding edge of generative AI. The 

technology has been in active development since 2018. ChatGPT is not 

the first LLM. In fact, it was not even the first LLM from OpenAI. It was, 

however, the most impactful one to reach the general public. The success 

of ChatGPT has also triggered a wave of competitor conversational AI 

platforms, such as Bard from Google and LLaMA from Meta AI, pushing 

the boundaries of the technology further.

As with any new technology, not everyone seems to have grasped 

what LLMs really are. Also, while many have expressed enthusiasm 

regarding LLMs and their capabilities, there are concerns being raised. The 

concerns range from AI taking over certain job roles, disruption of creative 

processes, forgeries, and existential risk brought on by superintelligent 

AIs. However, some of these concerns are due to the misunderstanding of 

LLMs. There are real potential risks associated with LLMs. But it may not 

be from where most people are thinking.

To understand both the usefulness and the risks, we must first learn 

how LLMs work and the history of AI that led to the development of LLMs.

 A Brief History of AI
Humans have always been intrigued by the idea of intelligent machines: 

the idea that machines or artificial constructs can be built with intelligent 

behavior, allowing them to perform tasks that typically require human 

intelligence. This idea pre-dates the concept of computers, and written 

records of the idea can be traced back to the 13th century. By the 19th 

century, it was this idea that brought forward concepts such as formal 

reasoning, propositional logic, and predicate calculus.
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In June 1956, many expert mathematicians and scientists who were 

enthusiasts in the subject of intelligent machines came together for a 

conference at Dartmouth College (New Hampshire, US). This conference—

The Dartmouth Summer Research Project on Artificial Intelligence—was 

the starting point of the formal research field of artificial intelligence. It 

was at this conference that the Logic Theorist, developed by Allen Newell, 

Herbert A. Simon, and Cliff Shaw and what is now considered to be the 

first artificial intelligence program, was also presented. The Logic Theorist 

was meant to mimic the logical problem-solving of a human and was able 

to prove 38 out of the first 52 theorems in Principia Mathematica (a book 

on the principles of mathematics written by Alfred North Whitehead and 

Bertrand Russell).

After its initiation, the field of artificial intelligence branched out 

into several subfields, such as expert systems, computer vision, natural 

language processing, etc. These subfields often overlap and build upon 

each other. Over the following years, AI has experienced several waves 

of optimism, followed by disappointment and the loss of funding (time 

periods referred to as AI winters, which are followed by new approaches 

being discovered, success, and renewed funding and interest).

One of the main obstacles the researchers of AI faced at the time 

was the incomplete understanding of intelligence. Even today we lack a 

complete understanding of how human intelligence works. By the late 

1990s, researchers proposed a new approach: rather than attempting to 

code intelligent behavior into a system, build a system that can grow its 

own intelligence. This idea created a new subfield of AI named machine 

learning.

The main aim of machine learning (ML) is to provide machines with 

the ability to learn without explicit programming, in the hopes that such 

systems once built will be able to evolve and adapt when they are exposed 

to new data. The core idea is the ability of a learner to generalize from 

experience. The learner (the AI system being trained), once given a set of 
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training samples, must be able to build a generalized model upon them, 

which would allow it to decide upon new cases with sufficient accuracy. 

Such training in ML can be provided in three main methods.

• Supervised learning: the system is given a set of labeled 

cases (training set) based on which the system is 

asked to create a generalized model that can act on 

unseen cases.

• Unsupervised learning: The system is given a set of 

unlabeled cases and asked to find a pattern in them. 

This is ideal for discovering hidden patterns.

• Reinforcement learning: The system is asked to take 

any action and is given a reward or a penalty based on 

how appropriate that action is to the given situation. 

The system must learn which actions yield the most 

rewards in given situations over time.

Machine learning can also use a combination of these main learning 

methods, such as semi-supervised learning in which a small number of 

labeled examples are used with a large set of unlabeled data for training.

With these base concepts of machine learning several models were 

introduced as means of implementing trainable systems and learning 

techniques, such as artificial neural networks (models inspired by how 

neurons of the brain work), decision trees (models that use tree-like 

structures to model decisions and outcomes), regression models (models 

that use statistical methods to map input and output variables), etc. These 

models proved exceptionally effective in areas such as computer vision 

and natural language processing.

The success of machine learning saw a steady growth in AI research 

and applications over the next decade. By around 2010 few other factors 

occurred that pushed their progress further.
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Building AI models, especially machine learning models such as 

neural networks, has always been computationally intensive. By the early 

2010s computing power started becoming cheaper and more available 

as more powerful and efficient processors were becoming available. In 

addition, specialist hardware platforms that benefited AI model training 

became available. This allowed more complex models to be evaluated. 

In parallel, the cost of data storage and processing continued to decline. 

This made collecting and processing large datasets more viable. Finally, 

advancements in the medical field increased the understanding of how 

the natural brain works. This new knowledge, and the availability of 

processing power and data, allowed more complex neural network models 

to be created and trained.

It was identified that the natural brain uses a hierarchical method 

to obtain knowledge, by building complicated concepts out of simpler 

ones. The brain does this by identifying lower-level patterns from the 

raw inputs and then building upon those patterns to learn higher-level 

features over many levels. This technique, when modeled on machine 

learning, is known as hierarchical feature learning and allows such 

systems to automatically learn complex features through multiple levels of 

abstraction with minimal human intervention. When applying hierarchical 

feature learning to neural networks, it results in deep networks with many 

feature learning layers. Thus, this approach was called deep learning.

A deep learning model will not try to understand the entire problem 

at once. Instead, it will look at the input, piece by piece, so that it can 

derive from its lower-level patterns/features. It then uses these lower-level 

features to gradually identify higher-level features, through many layers, 

hierarchically. This allows deep learning models to learn complicated 

patterns, by gradually building them up from simpler ones, allowing them 

to comprehend the world better.

Deep learning models were immensely successful in the tasks they 

were trained on, resulting in many deep learning architectures being 

developed such as convolutional neural networks (CNNs), stacked 
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autoencoders, generative adversarial networks (GANs), transformers, 

etc. Their success resulted in deep learning architectures being applied 

to many other AI fields such as computer vision and natural language 

processing.

In 2014, with the advancements in models such as variational 

autoencoders and generative adversarial networks, deep learning 

models were able to generate new data based on what they learned from 

their training. With the introduction of the transformer deep learning 

architecture in 2017, such capabilities were pushed even further. These 

latest generations of AI models were named generative AI and within a 

few short years were able to generate images, art, music, videos, code, text, 

and more.

This is where LLMs come into the picture.

 Where LLMs Stand
Large language models are the result of the combination of natural 

language processing, deep learning concepts, and generative AI models. 

Figure 1-1 shows where LLMs stand in the AI landscape.
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Figure 1-1. Where LLMs are in the AI landscape

 Summary
In this chapter, we went through the history of AI and how it has evolved. 

We also looked at where large language models stand in the broader 

AI landscape. In the next few chapters, we will look at the evolution of 

NLP and its core concepts, the transformer architecture, and the unique 

features of LLMs.
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CHAPTER 2

NLP Through the  
Ages
Natural language processing (NLP) is a subfield of artificial intelligence 

and computational linguistics. It focuses on enabling computers to 

understand, interpret, and generate human language in a way that is 

both meaningful and useful. The primary goal of NLP is to bridge the 

gap between human language and computer understanding, allowing 

machines to process, analyze, and respond to natural language data.

NLP is the heart of large language models (LLMs). LLMs would 

not exist without the concepts and algorithms developed through NLP 

research over the years. Therefore, to understand LLMs, we need to 

understand the concepts of NLP.

 History of NLP
The conception of natural language processing dates to the 1950s. In 

1950, Alan Turing published an article titled “Computing Machinery and 

Intelligence,” which discussed a method to determine whether a machine 

exhibits human-like intelligence. This proposed test, most popularly 

referred to as the Turing test, is widely considered as what inspired early 

NLP researchers to attempt natural language understanding.
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The Turing test involves a setup where a human evaluator interacts 

with both a human and a machine without knowing which is which. 

The evaluator’s task is to determine which participant is the machine 

and which is the human based solely on their responses to questions or 

prompts. If the machine is successful in convincing the evaluator that it 

is human, then it is said to have passed the Turing test. The Turing test 

thus provided a concrete and measurable goal for AI research. Turing’s 

proposal sparked interest and discussions about the possibility of 

creating intelligent machines that could understand and communicate in 

natural language like humans. This led to the establishment of NLP as a 

fundamental research area within AI.

In 1956, with the establishment of the artificial intelligence research 

field, NLP became an established field of research in AI, making it one of 

the oldest subfields in AI research.

During the 1960s and 1970s, NLP research predominantly relied on 

rule-based systems. One of the earliest NLP programs was the ELIZA 

chatbot, developed by Joseph Weizenbaum between 1964 and 1966. ELIZA 

used pattern matching and simple rules to simulate conversation between 

the user and a psychotherapist. With an extremely limited vocabulary 

and ruleset ELIZA was still able to articulate human-like interactions. The 

General Problem Solver (GPS) system, developed in the 1970s by Allen 

Newell and Herbert A. Simon, working with means-end analysis, also 

demonstrated some language processing capabilities.

In the 1970s and 1980s, NLP research began to incorporate linguistic 

theories and principles to understand language better. Noam Chomsky’s 

theories on generative grammar and transformational grammar influenced 

early NLP work. These approaches aimed to use linguistic knowledge and 

formal grammatical rules to understand and process human language.

The following are some key aspects of linguistic-based 

approaches in NLP.

Chapter 2  NLp through the ages 



11

 Formal Grammars
Linguistics-based NLP heavily relied on formal grammars, such as 

context-free grammars and phrase structure grammars. These formalisms 

provided a way to represent the hierarchical structure and rules of natural 

language sentences.

 Transformational Grammar and Generative  
Grammar
Noam Chomsky’s transformational grammar and generative grammar 

theories significantly influenced early NLP research. These theories 

focused on the idea that sentences in a language are generated from 

underlying abstract structures, and rules of transformation govern the 

relationship between these structures.

 Parsing and Syntactic Analysis
Parsing, also known as syntactic analysis, was a crucial aspect of 

linguistics-based NLP. It involved breaking down sentences into their 

grammatical components and determining the hierarchical structure. 

Researchers explored various parsing algorithms to analyze the syntax of 

sentences.

 Context and Semantics
Linguistics-based approaches aimed to understand the context and 

semantics of sentences beyond just their surface structure. The focus was 

on representing the meaning of words and phrases in a way that allowed 

systems to reason about their semantic relationships.
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 Language Understanding
Linguistics-based NLP systems attempted to achieve deeper language 

understanding by incorporating syntactic and semantic knowledge. This 

understanding was crucial for more advanced NLP tasks, such as question 

answering and natural language understanding.

 Knowledge Engineering
In many cases, these approaches required manual knowledge engineering, 

where linguistic rules and structures had to be explicitly defined by human 

experts. This process was time-consuming and limited the scalability of 

NLP systems.

There are, however, some limitations in linguistics-based NLP 

approaches. While linguistics-based approaches had theoretical 

appeal and offered some insights into language structure, they also 

faced limitations. The complexity of natural languages and the vast 

number of exceptions to linguistic rules made it challenging to develop 

comprehensive and robust NLP systems solely based on formal grammars.

Because of these limitations, while linguistic theories continued to 

play a role in shaping the NLP field, they were eventually complemented 

and, in some cases, surpassed by data-driven approaches and statistical 

methods.

During the 1990s and 2000s, NLP started shifting its focus from 

rule-based and linguistics-driven systems to data-driven methods. 

These approaches leveraged large amounts of language data to build 

probabilistic models, leading to significant advancements in various 

NLP tasks.

Statistical NLP methods used several approaches and applications. Let 

us look at a few next.
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 Probabilistic Models
Statistical approaches relied on probabilistic models to process and 

analyze language data. These models assigned probabilities to different 

linguistic phenomena based on their occurrences in large annotated 

corpora.

 Hidden Markov Models
Hidden Markov models (HMMs) were one of the early statistical models 

used in NLP. They were employed for tasks such as part-of-speech tagging 

and speech recognition. HMMs use probability distributions to model the 

transition between hidden states, which represent the underlying linguistic 

structures.

 N-Gram Language Models
N-gram language models became popular during this era. They predicted 

the likelihood of a word occurring given the preceding (n-1) words. 

N-grams are simple but effective for tasks such as language modelling, 

machine translation, and information retrieval.

 Maximum Entropy Models
Maximum entropy (MaxEnt) models were widely used in various NLP 

tasks. They are a flexible probabilistic framework that can incorporate 

multiple features and constraints to make predictions.
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 Conditional Random Fields
Conditional random fields (CRFs) gained popularity for sequence labeling 

tasks, such as part-of-speech tagging and named entity recognition. CRFs 

model the conditional probabilities of labels given the input features.

 Large Annotated Corpora
Statistical approaches relied on large annotated corpora for training and 

evaluation. These corpora were essential for estimating the probabilities used 

in probabilistic models and for evaluating the performance of NLP systems.

 Word Sense Disambiguation
Statistical methods were applied to word sense disambiguation (WSD) 

tasks, where the goal was to determine the correct sense of a polysemous 

word based on context. Supervised and unsupervised methods were 

explored for this task.

 Machine Translation
Statistical machine translation (SMT) systems emerged, which used 

statistical models to translate text from one language to another. Phrase- 

based and hierarchical models were common approaches in SMT.

 Information Retrieval
Statistical techniques were applied to information retrieval tasks, where 

documents were ranked based on their relevance to user queries.

While statistical approaches showed great promise, they still faced 

challenges related to data sparsity, handling long-range dependencies in 

language, and capturing complex semantic relationships between words.
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During the 2000s and 2010s, as we discussed in the history of AI, 

there was a significant rise in the application of machine learning (ML) 

techniques. This period witnessed tremendous advancements in ML 

algorithms, computational power, and the availability of large text corpora, 

which fueled the progress of NLP research and applications.

Several key developments contributed to the rise of machine learning–

based NLP during this time. Let us explore a few of them.

 Statistical Approaches
Statistical approaches became dominant in NLP during this period. 

Instead of hand-crafted rule-based systems, researchers started using 

probabilistic models and ML algorithms to solve NLP tasks. Techniques 

like HMMs, CRFs, and support vector machines (SVMs) gained popularity.

 Availability of Large Text Corpora
The rise of the Internet and digitalization led to the availability of vast 

amounts of text data. Researchers could now train ML models on large 

corpora, which greatly improved the performance of NLP systems.

 Supervised Learning for NLP Tasks
Supervised learning became widely used for various NLP tasks. With 

labeled data for tasks like part-of-speech tagging, named entity recognition 

(NER), sentiment analysis, and machine translation, researchers could 

train ML models effectively.
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 Named Entity Recognition
ML-based NER systems, which identify entities such as the names of people, 

organizations, and locations in text, became more accurate and widely used. 

This was crucial for information extraction and text understanding tasks.

 Sentiment Analysis
Sentiment analysis or opinion mining gained prominence, driven by the 

increasing interest in understanding public opinions and sentiments 

expressed in social media and product reviews.

 Machine Translation
Statistical machine translation (SMT) systems, using techniques such 

as phrase-based models, started to outperform rule-based approaches, 

leading to significant improvements in translation quality.

 Introduction of Word Embeddings
Word embeddings, like Word2Vec and GloVe, revolutionized NLP by 

providing dense vector representations of words. These embeddings 

captured semantic relationships between words, improving performance 

in various NLP tasks.

 Deep Learning and Neural Networks
The advent of deep learning and neural networks brought about a 

paradigm shift in NLP. Models like recurrent neural networks (RNNs), long 

short-term memory (LSTM), and convolutional neural networks (CNNs) 

significantly improved performance in sequence-to-sequence tasks, 

sentiment analysis, and machine translation.
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 Deployment in Real-World Applications
ML-based NLP systems found practical applications in various industries, 

such as customer support chatbots, virtual assistants, sentiment analysis 

tools, and machine translation services.

The combination of statistical methods, large datasets, and the advent 

of deep learning paved the way for the widespread adoption of ML-based 

NLP during the 2000s and 2010s.

Toward the end of the 2010s, pre-trained language models like ELMo, 

Generative Pre-trained Transformer (GPT), and Bidirectional Encoder 

Representations from Transformers (BERT) emerged. These models 

were pre-trained on vast amounts of data and fine-tuned for specific NLP 

tasks, achieving state-of-the-art results in various benchmarks. These 

developments enabled significant progress in language understanding, 

text generation, and other NLP tasks, making NLP an essential part of 

many modern applications and services.

 Tasks of NLP
With the primary goal of bridging the gap between human language and 

computer understanding, over its history, NLP has been applied to several 

tasks concerning language.

• Text classification: Assigning a label or category to 

a piece of text. For example, classifying emails as 

spam or not spam, sentiment analysis (identifying 

the sentiment as positive, negative, or neutral), topic 

categorization, etc.

• NER: Identifying and classifying entities mentioned 

in the text, such as names of people, organizations, 

locations, dates, and more.
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• Machine translation: Automatically translating text 

from one language to another.

• Text generation: Creating human-like text, which could 

be in the form of chatbots, autogenerated content, or 

text summarization.

• Speech recognition: Converting spoken language into 

written text.

• Text summarization: Automatically generating a 

concise and coherent summary of a longer text.

• Question answering: Providing accurate answers to 

questions asked in natural language.

• Language modeling: Predicting the likelihood of a given 

sequence of words occurring in a language.

The combination of one or more of these tasks forms the basis of 

current NLP applications.

 Basic Concepts of NLP
To achieve the previously mentioned tasks, NLP employs a set of key 

concepts. These are some of the most common:

• Tokenization: Tokenization is the process of breaking 

down a text into smaller units, typically words or 

subwords. These smaller units are called tokens, and 

tokenization is an essential preprocessing step in most 

NLP tasks.

• Stopword removal: Stopwords are common words 

(e.g., the, is, and) that often appear in a text but carry 

little semantic meaning. Removing stopwords can help 

reduce noise and improve computational efficiency.
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• Part-of-speech (POS) tagging: POS tagging involves 

assigning grammatical tags (e.g., noun, verb, adjective) 

to each word in a sentence, indicating its syntactic role.

• Parsing: Parsing involves analyzing the grammatical 

structure of a sentence to understand the relationships 

between words and phrases. Dependency parsing and 

constituency parsing are common parsing techniques.

• Word embeddings: Word embeddings are dense 

vector representations of words that capture semantic 

relationships between words. Word2Vec and GloVe are 

popular word embedding models.

• NER: NER is the process of identifying and classifying 

named entities mentioned in the text, such as names of 

people, organizations, locations, dates, etc.

• Stemming and lemmatization: Stemming and 

lemmatization are techniques used to reduce words to 

their base or root form. For example, running, runs, and 

ran might all be stemmed or lemmatized to run.

• Language models: Language models predict the 

likelihood of a sequence of words occurring in a 

language. They play a crucial role in various NLP tasks, 

such as machine translation and text generation.

Apart from these other task-specific techniques such as sequence- 

to- sequence models, attention mechanisms and transfer learning 

mechanisms are also used in NLP.

Let us investigate some of these concepts in depth, which will give us a 

better understanding of the internal workings of LLMs.
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 Tokenization
Tokenization is the process of breaking down a text or a sequence of 

characters into smaller units, called tokens. In NLP, tokens are typically 

words or subwords that form the basic building blocks for language 

processing tasks. Tokenization is a crucial preprocessing step before text 

can be used in various NLP applications.

Let’s take an example sentence: “I love natural language processing!”

The word level tokenization output would be as follows:

["I", "love", "natural", "language", "processing", "!"]

In this example, the tokenization process splits the sentence into 

individual words, removing any punctuation. Each word in the sentence 

becomes a separate token, forming a list of tokens.

Tokenization can be performed using various methods, and the choice 

of tokenizer depends on the specific NLP task and the characteristics of the 

text data. Some common tokenization techniques include the following:

• Whitespace tokenization: The text is split into tokens 

based on whitespace (spaces, tabs, newlines). It’s a 

simple and common approach for English text and can 

handle most cases, but it may not handle special cases 

like hyphenated words or contractions well.

• Punctuation tokenization: The text is split based 

on punctuation marks, such as periods, commas, 

exclamation marks, etc. It can be useful when handling 

text with significant punctuation, but it may result 

in issues when dealing with abbreviations or other 

special cases.
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• Word tokenization: This is a more advanced tokenizer 

that uses language-specific rules to split text into words. 

It can handle special cases like hyphenated words, 

contractions, and punctuation in a more linguistically 

accurate manner.

• Subword tokenization: Subword tokenization methods 

like byte-pair encoding (BPE) and SentencePiece 

split words into subword units, allowing the model to 

handle out-of-vocabulary words and handle rare or 

unseen words more effectively.

The choice of tokenizer can depend on the specific use case and 

requirements of the NLP task. Tokenization is the first step in converting 

raw text into a format that can be processed and analyzed by NLP models 

and algorithms.

 Corpus and Vocabulary
In NLP, a corpus refers to a large collection of text documents or utterances 

that are used as a dataset for language analysis and model training. A 

corpus serves as the primary source of data for various NLP tasks, allowing 

researchers and practitioners to study language patterns, extract linguistic 

information, and develop language models.

A corpus can take various forms depending on the specific NLP task or 

research objective. Some common types of corpora include the following:

• Text corpora: A text corpus is a collection of written text 

documents, such as books, articles, web pages, emails, 

and social media posts. Text corpora are commonly 

used for tasks such as language modeling, sentiment 

analysis, text classification, and information retrieval.

Chapter 2  NLp through the ages 



22

• Speech corpora: A speech corpus consists of audio 

recordings or transcriptions of spoken language. 

Speech corpora are used in tasks such as speech 

recognition, speaker identification, and emotion 

detection.

• Parallel corpora: A parallel corpus contains text in 

multiple languages that are aligned at the sentence or 

document level. Parallel corpora are used for machine 

translation and cross-lingual tasks.

• Treebanks: Treebanks are annotated corpora that 

include syntactic parse trees, representing the 

grammatical structure of sentences. Treebanks are 

used in tasks like parsing and syntax-based machine 

learning.

• Multimodal corpora: Multimodal corpora include 

text along with other modalities, such as images, 

videos, or audio. They are used in tasks that involve 

understanding and generating information from 

multiple modalities.

Building and curating high-quality corpora is essential for the success 

of various NLP applications, as the performance and generalization of 

language models heavily rely on the quality and diversity of the data they 

are trained on.

A vocabulary in NLP refers to the set of unique words or tokens present 

in a corpus of text. It is a fundamental component of language processing, 

as it defines the complete list of words that a model or system can 

understand and work with.
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When processing text data, the following steps are typically performed 

to create a vocabulary:

 1. Tokenization: The text is split into individual tokens, 

which can be words, subwords, or characters, 

depending on the tokenization strategy used.

 2. Filtering and normalization: Common 

preprocessing steps such ss converting text to 

lowercase, removing punctuation, and filtering out 

stopwords are applied to clean the data and reduce 

the size of the vocabulary.

 3. Building vocabulary: After tokenization and 

preprocessing, the unique tokens in the text data 

are collected to form the vocabulary. Each token is 

assigned a unique numerical index, which serves as 

its representation in the model or during encoding 

processes.

The vocabulary is often used to create numerical representations 

of text data. In many NLP models, words are represented as dense 

vectors (word embeddings) where each word’s embedding is indexed 

using its integer representation in the vocabulary. This allows words to 

be processed and manipulated as numerical data, making it easier for 

machine learning models to work with textual information.

The size of the vocabulary depends on the corpus of text used for 

training the model. Large-scale models, such as LLMs, often have very 

extensive vocabularies containing hundreds of thousands or even millions 

of unique words.

Handling the vocabulary size can be a challenge, as very large vocabularies 

require more memory and computational resources. Techniques like 

subword tokenization, which splits words into subword units, and methods 

like Byte-Pair Encoding (BPE) or SentencePiece, can be used to handle large 

vocabularies more efficiently and handle rare or out-of-vocabulary words.
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 Word Embeddings
Word embeddings are dense vector representations of words in a 

continuous vector space, where similar words are closer to each other. 

These representations capture semantic relationships between words, 

allowing NLP models to understand word meanings based on their 

context.

The main advantages of word embeddings are as follows:

• Semantic meaning: Word embeddings capture 

semantic meaning and relationships between words. 

Similar words are close to each other in the embedding 

space, and analogies like “man is to woman as king is to 

queen” can be represented as vector arithmetic.

• Dimensionality reduction: Word embeddings reduce 

the dimensionality of the word representation 

compared to one-hot encodings. While one-hot 

encodings are binary vectors with a length equal to the 

vocabulary size, word embeddings typically have much 

smaller fixed dimensions (e.g., 100, 300) regardless of 

the vocabulary size.

• Generalization: Word embeddings generalize across 

words, allowing models to learn from limited data. 

Words that share similar contexts tend to have similar 

embeddings, which enables models to understand the 

meaning of new words based on their context.

• Continuous space: The embedding space is continuous, 

enabling interpolation and exploration of relationships 

between words. For example, one can add the vector 

for “Spain” to “capital” and subtract “France” to find a 

vector close to “Madrid.”
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Word embeddings are a fundamental tool in NLP and have greatly 

improved the performance of various NLP tasks, such as machine 

translation, sentiment analysis, text classification, and information retrieval. 

Popular word embedding methods include simpler methods such as bag-

of-words (BoW) to more sophisticated methods such as Word2Vec, Global 

Vectors for Word Representation (GloVe), and fastText. These methods 

learn word embeddings by considering the co-occurrence patterns of words 

in large text corpora, allowing the representations to capture the semantic 

meaning and contextual relationships of words in the language.

Let us investigate two of these methods, bag-of-words and Word2Vec, 

in more detail.

 Bag-of-Words

The BoW method is a simple and popular technique for text 

representation. It disregards the order and structure of words in a 

document and focuses on the frequency of each word in the text. The 

BoW model represents a document as a histogram of word occurrences, 

creating a “bag” of words without considering their sequence.

Here are the steps of the bag-of-words method:

 1. Tokenization: The first step is to break down the text 

into individual words or tokens.

 2. Vocabulary creation: The BoW model creates a 

vocabulary, which is a list of all unique words 

found in the corpus. Each word in the vocabulary is 

assigned a unique index.

 3. Vectorization: To represent a document using BoW, 

a vector is created for each document, with the 

length equal to the size of the vocabulary. Each 

element of the vector corresponds to a word in the 

vocabulary, and its value represents the frequency 

of that word in the document.
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Here is an example on the bag-of-words method:

Let us take a corpus of the following three sentences:

• “I love to eat pizza.”

• “She enjoys eating pasta.”

• “They like to cook burgers.”

Step 1: Tokenization
The tokens in the corpus are: [“I”, “love”, “to”, “eat”, “pizza”, “She”, 

“enjoys”, “eating”, “pasta”, “They”, “like”, “to”, “cook”, “burgers”].

Step 2: Vocabulary Creation
The vocabulary contains all unique words from the tokenized corpus: 

[“I”, “love”, “to”, “eat”, “pizza”, “She”, “enjoys”, “eating”, “pasta”, “They”, “like”, 

“cook”, “burgers”].

The vocabulary size is 13.

Step 3: Vectorization
Now, each document is represented as a vector using the vocabulary. 

The vectors for the three sentences will be as follows:

[1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0]

(The vector shows that the words I, love, to, eat, and pizza appear once 

in the document.)

[0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0]

(The vector shows that the words She, enjoys, eating, and pasta appear 

once in the document.)

[0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1]

(The vector shows that the words They, like, to, cook, and burgers 

appear once in the document.)

Note that the order of the words is lost in the BoW representation, and 

each document is represented solely based on the frequency of the words 

present in it.
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The BoW method is a straightforward and effective way to convert text 

into numerical vectors for use in various machine learning algorithms and 

NLP tasks, such as text classification and information retrieval. However, 

it does not consider the context or semantics of words, which can limit its 

ability to capture deeper meaning in language data.

 Word2Vec

Word2Vec is a popular and influential word embedding method in NLP. It 

was introduced by Tomas Mikolov et al. at Google in 2013 and has since 

become a foundational technique in various NLP tasks. The main idea 

behind Word2Vec is to represent words as points in a high-dimensional 

space, where the relative positions of words capture their semantic 

relationships and contextual similarities. Words that appear in similar 

contexts or have similar meanings are mapped to vectors that are close to 

each other in the embedding space.

There are two primary architectures for training Word2Vec models.

• Continuous bag-of-words (CBOW)

CBOW aims to predict the target word given its context 

(surrounding words). It uses a neural network to learn 

word embeddings by taking the context words as input 

and predicting the target word.

The context words are represented as one-hot-encoded 

vectors or embeddings, and they are averaged to form a 

single context vector.

The CBOW model tries to minimize the prediction 

error between the predicted target word and the actual 

target word.
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• Skip-gram

Skip-gram, on the other hand, aims to predict the 

context words given a target word. It tries to learn the 

embeddings by maximizing the likelihood of the context 

words given the target word.

The target word is represented as a one-hot-encoded 

vector or embedding, and the model tries to predict the 

surrounding context words based on this representation.

Skip-gram is often preferred when the dataset is large, as 

it generates more training examples by considering all 

the context words for each target word.

During training, Word2Vec uses a shallow neural network to learn the 

embeddings. The weights of the neural network are updated during the 

training process using stochastic gradient descent or similar optimization 

techniques. The objective is to learn word embeddings that effectively 

capture the word semantics and co-occurrence patterns in the corpus.

Once trained, the Word2Vec model provides word embeddings 

that can be used as input to various NLP tasks or serve as a powerful 

representation for downstream applications. The trained embeddings 

can be used in tasks such as sentiment analysis, machine translation, 

document classification, and information retrieval, where they capture the 

meaning and relationships between words in a continuous vector space. 

Word2Vec has been instrumental in advancing the performance of NLP 

models by enabling them to work effectively with textual data in a more 

semantically meaningful manner.
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The typical process to train a Word2Vec model would involve the 

following steps:

 1. Data preparation:

Gather a large corpus of text data that will be used 

for training the Word2Vec model. The corpus should 

represent the domain or language you want to 

capture word embeddings for.

 2. Tokenization:

Tokenize the text data to break it down into 

individual words or subwords. Remove any 

unwanted characters, punctuation, and stopwords 

during tokenization.

 3. Create context-target pairs:

For each target word in the corpus, create context-

target pairs. The context is a window of words 

surrounding the target word. The size of the window 

is a hyperparameter, typically set to a small value 

like 5 to 10 words. The context-target pairs are used 

to train the model to predict the context given the 

target word, or vice versa.

 4. Convert words to indices:

Convert the words in the context-target pairs into 

numerical indices, as Word2Vec models typically 

work with integer word indices rather than actual 

word strings.
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 5. Create training examples:

Use the context-target pairs to create training 

examples for the Word2Vec model. Each training 

example consists of a target word (input) and its 

corresponding context words (output) or vice 

versa, depending on the architecture (CBOW or 

skip-gram).

 6. Architecture selection:

Choose the architecture you want to use for the 

Word2Vec model. The two main architectures are 

the following:

• CBOW: Predict the target word based on the 

context words.

• Skip-gram: Predict the context words based on  

the target word.

 7. Define the neural network:

Create a shallow neural network for the chosen 

architecture. The network will consist of an 

embedding layer that represents words as dense 

vectors and a softmax layer (for CBOW) or negative 

sampling (for skip-gram) to perform the word 

predictions.

 8. Training:

Train the Word2Vec model on the training 

examples using stochastic gradient descent or other 

optimization algorithms. The objective is to minimize 

the prediction loss, which measures the difference 

between predicted and actual context or target words.
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 9. Learn word embeddings:

As the model trains, the embedding layer learns to 

map each word to a dense vector representation. 

These word embeddings capture semantic 

relationships and meaning based on the co-

occurrence patterns of words in the corpus.

 10. Evaluation:

After training, evaluate the quality of the learned 

word embeddings on downstream NLP tasks, such 

as word similarity, analogies, or text classification, 

to ensure they capture meaningful semantic 

information.

The training process may require hyperparameter tuning, and the 

model may need to be trained on a large corpus and for multiple epochs to 

learn effective word embeddings. Once trained, the Word2Vec model can 

be used to generate word vectors for any word in the vocabulary, enabling 

the exploration of semantic relationships between words in a continuous 

vector space.

Because of the popularity of the Word2Vec model, many machine 

learning and NLP libraries have built-in implementations of it. This allows 

you to easily utilize Word2Vec embeddings in your code without having to 

manually train neural networks for it.

 Bag-of-Words vs. Word2Vec

While both Bag-of-Words and Word2Vec are text representation methods 

in NLP there are some key differences between them.
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Representation

• Bag-of-Words (BoW): BoW represents a document as 

a histogram of word occurrences, without considering 

the order or structure of the words. It creates a “bag” of 

words, and each element in the vector represents the 

frequency of a specific word in the document.

• Word2Vec: Word2Vec, on the other hand, represents 

words as dense vectors in a continuous vector space. 

It captures the semantic meaning and relationships 

between words based on their context in the corpus. 

Word2Vec embeddings are learned through a shallow 

neural network model trained on a large dataset.

Context and semantics

• BoW: BoW does not consider the context or semantics 

of words in a document. It treats each word as an 

independent entity and focuses only on the frequency 

of occurrence.

• Word2Vec: Word2Vec leverages the distributional 

hypothesis, which suggests that words with similar 

meanings tend to appear in similar contexts. Word2Vec 

captures word embeddings that encode semantic 

relationships, allowing for better understanding of 

word meanings and similarities based on context.

Vector size

• BoW: The size of the BoW vector is equal to the size 

of the vocabulary in the corpus. Each word in the 

vocabulary is represented by a unique index, and the 

vector elements indicate the frequency of occurrence.
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• Word2Vec: Word2Vec generates dense word 

embeddings, typically with a fixed size (e.g., 100, 300 

dimensions). The size of the word embeddings is 

generally much smaller compared to the BoW vector, 

which can be useful for memory and computational 

efficiency.

Order of words

• BoW: BoW ignores the order of words in the document, 

as it treats each document as a collection of individual 

words and their frequencies. The order of words is lost 

in the BoW representation.

• Word2Vec: Word2Vec considers the order of words 

in the context window during training. It learns word 

embeddings by predicting the likelihood of words 

appearing in the context of other words, which 

allows it to capture word meanings based on the 

surrounding words.

Application

• BoW: BoW is commonly used for text classification, 

sentiment analysis, and information retrieval tasks. It 

is a simple and effective representation for these tasks, 

especially when the sequence of words is not crucial.

• Word2Vec: Word2Vec is more suitable for tasks that 

require understanding word semantics and capturing 

word relationships, such as word similarity, word 

analogies, and language generation tasks.
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In summary, bag-of-words is a straightforward and interpretable 

method that represents text using word frequencies but lacks contextual 

understanding. Word2Vec, on the other hand, generates dense word 

embeddings that capture semantic meaning and relationships between 

words based on context, making it more suitable for various advanced 

NLP tasks.

 Language Modeling
In natural language processing, language models are a class of models that 

are designed to predict the likelihood of a sequence of words occurring in 

a language. In other words, A language model is a probability distribution 

over sequences of words. These models learn the statistical properties and 

patterns present in a given language to generate new text or evaluate the 

likelihood of a sentence.

Language models play a crucial role in various NLP tasks, such as 

machine translation, speech recognition, text generation, sentiment 

analysis, and more. They are fundamental to many advanced NLP 

applications such as LLMs and have contributed significantly to the 

success of modern NLP techniques.

Based on the tasks they perform language models can be broadly 

classify into two categories:

• Generative language models: These models are 

designed to generate new text based on the patterns 

they have learned from the training data. They take a 

seed input (known as a prompt or starting sequence) 

and then generate the next word or sequence of words 

one step at a time. Generative language models can 

be used for tasks like text generation, story generation, 

and poetry writing.
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• Predictive language models: These models are used 

to predict the likelihood of the next word in a given 

context. They take the previous words as input and 

predict the most probable next word based on the 

training data. Predictive language models are widely 

used in tasks like autocomplete, next-word prediction, 

and machine translation.

Based on their approach, there are primarily two types of 

language models:

• N-gram language models: N-gram language models 

are the simplest form. They predict the probability 

of a word based on the occurrence of the previous 

(n-1) words in the text. The “n” in n-gram refers to 

the number of words in the sequence. For example, 

a 2-gram (bigram) language model predicts the 

probability of a word based on the previous word, and 

a 3-gram (trigram) language model considers the two 

preceding words.

Example (2-gram model):

Sentence: “I love to”

Probability of “to” given “I love”: P(to | I love)

N-gram models have limitations in capturing long- 

range dependencies and contextual information, as they 

consider only a fixed number of preceding words.

• Neural language models: Neural language models, also 

known as neural network–based language models, are 

more advanced and widely used in modern NLP. These 

models use deep learning techniques to learn word 

representations and capture complex relationships 

between words in a more flexible manner.
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• Recurrent neural networks (RNNs): RNNs are one 

of the earliest neural language models that can 

consider variable-length context. They use a recurrent 

architecture to process words sequentially while 

maintaining a hidden state that captures the context.

• Long short-term memory (LSTM) and gated recurrent 

units (GRUs): These are variations of RNNs designed to 

address the vanishing gradient problem, allowing them 

to capture long-range dependencies more effectively.

• Transformers: Transformers have revolutionized the 

field of NLP and are the basis for many state-of-the-art 

language models. Transformers utilize self-attention 

mechanisms to process words in parallel, capturing 

both short and long-range dependencies efficiently. 

LLMs like Generative Pre-trained Transformer (GPT) 

and Bidirectional Encoder Representations from 

Transformers (BERT) are examples of successful 

transformer-based language models.

Let us investigate each of the approaches to language models.

 N-Gram Language Models
N-gram language models are a class of statistical language models used in 

NLP to predict the likelihood of a sequence of words (n-grams) occurring 

in a given text. These models are based on the principle of conditional 

probability, where the probability of a word is estimated based on the 

context of the preceding words.
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In an N-gram language model, an “N-gram” refers to a contiguous 

sequence of N words from a text. For example:

• Unigram (1-gram): Single words in isolation

• Bigram (2-gram): Pairs of consecutive words

• Trigram (3-gram): Triplets of consecutive words

• N-gram: A sequence of N consecutive words

The primary idea behind N-gram language models is to approximate 

the probability of a word given its N-1 preceding words, as shown by the 

following formula:

P(w_i | w_1, w_2, ..., w_{i-1}) ≈ Count(w_{i-N+1}, w_{i-N+2}, 
..., w_{i-1}, w_i) / Count(w_{i-N+1}, w_{i-N+2}, ..., w_{i-1})

where:

• P(w_i | w_1, w_2, ..., w_{i-1}) is the probability 

of word w_i given the context of the preceding words 

w_1, w_2, ..., w_{i-1}.

• Count(w_{i-N+1}, w_{i-N+2}, ..., w_{i-1}, w_i) 

is the count of the N-gram (sequence) w_{i-N+1}, w_

{i-N+2}, ..., w_{i-1}, w_i in the training data.

• Count(w_{i-N+1}, w_{i-N+2}, ..., w_{i-1}) is the 

count of the (N-1)-gram (sequence) w_{i-N+1}, w_{i- 

N+2}, ..., w_{i-1} in the training data.

In practice, to compute these probabilities, a large corpus of text 

is used as the training data. The model builds a frequency table of all 

observed N-grams in the training data, and the probabilities are estimated 

by dividing the count of the N-gram by the count of its context.
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The main steps in building and using an N-gram language model are 

as follows:

 1. Collect and preprocess a large corpus of text for 

training.

 2. Tokenize the text into words or subwords.

 3. Build a frequency table of N-grams and their counts 

in the training data.

 4. Estimate the probabilities of N-grams using the 

frequency table.

 5. Use the N-gram probabilities to predict the next 

word in a given context or to generate new text.

Let us take an example for building an n-gram language model using 

lyrics from the song “Imagine” by John Lennon:

"Imagine there's no heaven

It's easy if you try

No hell below us

Above us only sky

Imagine all the people

Living for today

Ah..."

• Step 1: Preprocess and tokenize

imagine, there's, no, heaven

it's, easy, if, you, try

no, hell, below, us

above, us, only, sky

imagine, all, the, people

living, for, today

ah
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• Step 2: Building the N-grams

Here, bigrams (2-grams) are considered for 

simplicity.

["imagine", "there's"], ["there's", "no"], ["no", 

"heaven"]

["it's", "easy"], ["easy", "if"], ["if", "you"], 

["you", "try"]

["no", "hell"], ["hell", "below"], 

["below", "us"]

["above", "us"], ["us", "only"], ["only", "sky"]

["imagine", "all"], ["all", "the"], ["the", 

"people"]

["living", "for"], ["for", "today"]

• Step 3: Calculating the probabilities

• We can do this by counting the occurrences of 

each bigram.

["imagine", "there's"]: 2 times

["there's", "no"]: 1 time

["no", "heaven"]: 1 time

["it's", "easy"]: 1 time

["easy", "if"]: 1 time

["if", "you"]: 1 time

["you", "try"]: 1 time

["no", "hell"]: 1 time

["hell", "below"]: 1 time

["below", "us"]: 1 time

["above", "us"]: 1 time

["us", "only"]: 1 time

["only", "sky"]: 1 time
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["imagine", "all"]: 1 time

["all", "the"]: 1 time

["the", "people"]: 1 time

["living", "for"]: 1 time

["for", "today"]: 1 time

• Then calculate the probability of each based on the 

occurrences.

P("imagine" | "there's"): 2/2 = 1.0

P("there's" | "no"): 1/1 = 1.0

P("no" | "heaven"): 1/1 = 1.0

P("it's" | "easy"): 1/1 = 1.0

...

Once the bigram probabilities are calculated, they can be used to 

generate new text.

For example, start with the seed phrase “Imagine there’s.”

P("imagine" | "there's") = 1.0

Predicted next word: "no"

New phrase: "Imagine there's no"

New Seed phrase: "Imagine there's no"

P("there's" | "no") = 1.0

Predicted next word: "heaven"

New phrase: "Imagine there's no heaven"

New Seed phrase: "Imagine there's no heaven"

P("no" | "heaven") = 1.0

Predicted next word: "it's"

New phrase: "Imagine there's no heaven it's"
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We can continue running the new phrase through the model again and 

again to get more and more predictions. In practice, higher-order n-grams 

(e.g., trigrams or higher) may be used to improve text generation quality. 

This example illustrates just the basic concept of building an n-gram 

language model using song lyrics as input.

 Handling Unknown N-Grams

In the previous example, all bigrams have occurred in the training data, 

but in a real-world scenario, you may encounter unseen bigrams. To 

handle this, you can use techniques such as smoothing to assign a small 

probability to unseen bigrams.

Smoothing, also known as add-one smoothing or Laplace smoothing, 

is a technique used to address the issue of zero probabilities for unseen 

n-grams in language modeling. In an n-gram language model, when an 

n-gram is encountered in the test data that was not present in the training 

data, the probability of that n-gram becomes zero in the model. This can 

lead to unreliable and unrealistic predictions when generating text.

Smoothing addresses this problem by adding a small constant 

value (usually 1) to the count of all n-grams in the training data before 

calculating their probabilities. This ensures that even unseen n-grams 

receive a nonzero probability, and it prevents the model from assigning 

absolute zero probabilities to any possible sequence of words.

To illustrate smoothing, let us look back at the previous example:

["imagine", "there's"]: 2 times

["there's", "no"]: 1 time

["no", "heaven"]: 1 time

["it's", "easy"]: 1 time

["easy", "if"]: 1 time
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Here it is without smoothing:

P("there's" | "no") = 1/1 = 1.0

P("no" | "heaven") = 1/1 = 1.0

In this case, the probabilities for “there’s” given “no” and “no” given 

“heaven” are 1.0, which seems reasonable based on the training data. 

However, if we encounter a new bigram in the test data, such as [“no”, 

“worries”], the probability for this unseen bigram will be zero since it was 

not in the training data.

Let’s look at it with smoothing (add-one smoothing).

Apply add-one smoothing by adding 1 to all bigram counts:

["imagine", "there's"]: 3 times (original count + 1)

["there's", "no"]: 2 times (original count + 1)

["no", "heaven"]: 2 times (original count + 1)

["it's", "easy"]: 2 times (original count + 1)

["easy", "if"]: 2 times (original count + 1)

["no", "worries"]: 1 time (unseen bigram, now has a  

non- zero count)

P("there's" | "no") = 2/2 = 1.0

P("no" | "heaven") = 2/2 = 1.0

P("no" | "worries") = 1/2 = 0.5 (with add-one smoothing)

By applying add-one smoothing, the probabilities for unseen n-grams 

are no longer zero, and they receive a small probability value. This makes 

the model more robust and prevents it from being overly confident about 

the probabilities of unseen n-grams.

Smoothing is a widely used technique in language modeling, 

especially with small training datasets or when dealing with higher- 

order n-grams, where the likelihood of unseen n-grams becomes more 

prevalent.
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N-gram language models are relatively simple to implement and 

can provide reasonable results, especially for lower-order N-grams (e.g., 

bigrams or trigrams). However, they have limitations when it comes 

to capturing long-range dependencies and understanding the context 

beyond a fixed window of N words. To address these limitations, more 

advanced models like neural language models have been developed, 

which can capture longer dependencies and generate more coherent 

and contextually accurate text. Nonetheless, N-gram models remain an 

essential concept in NLP and have been used in various applications, 

including text generation, spell checking, speech recognition, and 

machine translation.

 Neural Language Models
Neural language models are a class of advanced language models used 

in NLP that leverage neural networks to learn the statistical patterns and 

relationships between words in a large corpus of text. Unlike traditional 

N-gram models that have limited context and struggle with capturing long- 

range dependencies, neural language models can process sequences of 

words with variable length, making them more effective in understanding 

the context and generating coherent and contextually relevant text.

Neural language models are typically based on two main architectures: 

recurrent neural networks and transformer-based models.

 Recurrent Neural Networks

RNNs are a type of neural network designed to handle sequential data, 

making them well-suited for processing sequences of words in natural 

language. RNNs have a recurrent structure that allows them to maintain 

hidden states, capturing information about the context of previous words. 

This context is crucial in language modeling, where the meaning of a 
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word often depends on the words that precede it. One of the most widely 

used RNN variants in language modeling is the long short-term memory 

(LSTM) network, which is designed to address the vanishing gradient 

problem and handle long-range dependencies.

 Transformer-Based Models

Transformers are a revolutionary architecture introduced in the paper 

“Attention Is All You Need” by Vaswani et al. in 2017. Transformers employ 

self-attention mechanisms to capture dependencies between all words 

in a sequence simultaneously, enabling them to process long-range 

dependencies more effectively than RNNs. The transformer architecture 

has become the foundation for many state-of-the-art language models, 

including the widely known BERT and GPT models.

The training process for neural language models typically involves 

feeding the model with sequences of words and training it to predict the 

next word in a sequence given the preceding words. The model’s weights 

are updated during training using backpropagation and gradient descent 

to minimize the prediction error. The trained model can then be used 

for various NLP tasks, including text generation, machine translation, 

sentiment analysis, question-answering, and more.

Recurrent neural networks (RNNs) are bi-directional artificial neural 

networks, allowing the output from some nodes to affect subsequent 

input to the same nodes. Their ability to use internal state (memory) to 

process arbitrary sequences of inputs makes them particularly well-suited 

for sequential data, making them effective in capturing the temporal 

dependencies and context in natural language.

The main idea behind RNNs is that they maintain hidden states, which 

act as memory, to capture information from previous time steps and 

pass it along to the next time step. This property enables RNNs to handle 

sequences of variable length and maintain context as they process each 

word in a sentence.
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Typical workings of an RNN-based language model include the 

following:

• Word embeddings: The word embeddings used for 

RNNs must capture the semantic meaning of words 

and help the model understand the relationships 

between different words. Therefore, methods like 

Word2Vec are used.

• Sequence processing: The word embeddings are fed into 

the RNN one word at a time in a sequential manner. 

At each time step, the RNN takes the current word 

embedding and the hidden state from the previous 

time step as inputs and produces an output and an 

updated hidden state.

• Hidden states: The hidden state at each time step is 

updated based on the current word embedding and the 

previous hidden state, allowing the RNN to remember 

relevant information from previous words.

• Training: During training, the RNN is fed with 

sequences of words from a large corpus of text, and it is 

trained to minimize the prediction error between the 

predicted next word and the actual next word in the 

sequence. The training process uses backpropagation 

and gradient descent to update the model’s parameters 

and optimize its performance.

• Prediction: The output at each time step can be used to 

predict the probability distribution over the next word 

in the sequence. By using the output and hidden state 

at each time step, the model can predict the next word 

given the preceding words.
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RNN-based language models have the advantage of capturing long- 

range dependencies in sequences, making them effective in understanding 

the context of words in a sentence. However, they also suffer from some 

limitations, such as the vanishing gradient problem, which hinders their 

ability to capture long-term dependencies effectively.

The vanishing gradient problem is a challenge that arises during the 

training of RNNs, especially those with many layers or long sequences. It 

occurs due to the nature of the backpropagation algorithm, which is used 

to update the model’s weights during training.

In RNNs, the same set of weights is shared across all time steps, 

allowing the model to maintain memory of past information and capture 

sequential dependencies. When processing long sequences, however, 

the gradients (partial derivatives of the loss with respect to the model’s 

parameters) can become extremely small as they are repeatedly multiplied 

together during backpropagation.

As the gradients become very small, the updates to the model’s weights 

during training become negligible. Consequently, the RNN struggles to 

learn long-term dependencies and may fail to capture relevant information 

from the distant past. This results in the RNN being unable to retain 

meaningful context beyond a few time steps, limiting its effectiveness in 

capturing long-range dependencies in the input sequences.

The vanishing gradient problem is particularly problematic in 

deep RNNs (those with many layers) or when processing sequences of 

considerable length. When the gradients vanish, the model’s learning 

process slows down significantly, and it may even get stuck in a state where 

it fails to make any meaningful progress.

To address this issue, various RNN variants with specialized 

architectures have been introduced, such as the long short-term memory (LSTM)  

and gated recurrent unit (GRU).

LSTM and GRU architectures include gating mechanisms that 

selectively control the flow of information through the network. These 

gating mechanisms help RNNs retain and update relevant information 
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over longer time scales, effectively mitigating the vanishing gradient 

problem and improving the model’s ability to learn long-term 

dependencies in sequential data.

LSTM-based language models are a variant of RNNs. LSTMs use gating 

mechanisms to selectively retain and update information in their hidden 

states, making them more capable of maintaining relevant context over 

longer sequences.

The basic concepts of LSTM-based language models are as follows:

• LSTM structure:

The LSTM cell is the fundamental building block of 

the LSTM-based language model. It consists of several 

components, including the input gate, forget gate, output 

gate, and cell state.

• Cell state and hidden state:

The LSTM maintains two primary states: the cell state 

(often denoted as ‘c’) and the hidden state (often denoted 

as ‘h’).

The cell state is responsible for capturing long-term 

dependencies in the input sequence. It acts as a memory 

that stores relevant information from previous time steps.

The hidden state contains the relevant context for the 

current time step and is used for making predictions.

• Gating mechanisms:

LSTMs use gating mechanisms to control the flow of 

information through the cell state. These gates are 

sigmoid-activated neural networks that produce values 

between 0 and 1.

Chapter 2  NLp through the ages 



48

The input gate determines how much of the new 

information should be added to the cell state at the 

current time step.

The forget gate determines how much of the previous cell 

state should be retained and carried over to the current 

time step.

The output gate determines how much of the cell 

state should be exposed to the next time step as the 

hidden state.

• LSTM computation:

At each time step, the LSTM cell takes the current word 

embedding and the previous hidden state as inputs.

It then computes the values of the input gate, forget gate, 

and output gate using sigmoid activation functions based 

on the inputs and the previous hidden state.

The cell state is updated by combining the output 

of the forget gate (to forget irrelevant information) 

and the output of the input gate (to add new relevant 

information).

The updated cell state is then used to compute the new 

hidden state, which becomes the output of the LSTM cell 

at the current time step.

The LSTM cell’s output (hidden state) is then used to 

predict the probability distribution over the next word in 

the sequence.
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• Training and generation:

During training, the LSTM-based language model is 

fed with sequences of words from a large corpus of text 

and is trained to minimize the prediction error between 

the predicted next word and the actual next word in the 

sequence.

Once the LSTM-based language model is trained, it can 

be used to generate new text or complete existing text by 

predicting the next word given a seed input, similar to the 

standard RNN-based language models.

LSTM-based language models have shown significant 

improvements in handling long-range dependencies and 

capturing context in sequential data. They have become a 

standard architecture in various NLP tasks.

GRU-based language models are another variant of 

RNNs that address the vanishing gradient problem. 

GRUs use gating mechanisms to selectively control the 

flow of information through the hidden state, making 

them effective in retaining relevant context over longer 

sequences.

The following are the basic concepts of GRU-based language models:

• GRU structure:

The GRU cell is the fundamental building block of the 

GRU-based language model. It is similar to the LSTM cell 

but has a simplified structure with fewer parameters.

The GRU cell consists of several components, including 

the reset gate and update gate.
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• Hidden state:

Similar to LSTM-based language models, the GRU 

maintains a hidden state (often denoted as ‘h’a).

The hidden state contains the relevant context for the 

current time step and is used for making predictions.

• Gating mechanisms:

GRUs use two gating mechanisms: the reset gate and the 

update gate. These gates are sigmoid-activated neural 

networks that produce values between 0 and 1.

The reset gate determines how much of the previous 

hidden state should be forgotten or reset, allowing the 

GRU to selectively update the hidden state based on the 

current input and the previous hidden state.

The update gate determines how much of the new 

information should be retained and merged into the 

hidden state.

• GRU computation:

At each time step, the GRU cell takes the current word 

embedding and the previous hidden state as inputs.

It computes the values of the reset gate and update gate 

using sigmoid activation functions based on the inputs 

and the previous hidden state.

The GRU then computes the candidate activation, 

which is a new proposed hidden state that incorporates 

information from the current input and the reset 

gate’s output.
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The candidate activation is combined with the previous 

hidden state, weighted by the update gate’s output, to 

compute the new hidden state at the current time step.

The GRU cell’s output (hidden state) is then used to 

predict the probability distribution over the next word in 

the sequence.

• Training and generation:

During training, the GRU-based language model is fed 

with sequences of words from a large corpus of text and 

is trained to minimize the prediction error between the 

predicted next word and the actual next word in the 

sequence.

Once the GRU-based language model is trained, it can 

be used to generate new text or complete existing text by 

predicting the next word given a seed input, similar to 

other RNN-based language models.

GRU-based language models have shown excellent performance in 

capturing long-range dependencies and context in sequential data. They 

have become popular alternatives to LSTM-based models due to their 

simpler architecture and efficient training process.

While they share some similarities, LSTMs and GRUs have key 

differences in their architecture and functionality:

Architecture complexity

• LSTM: LSTM has a more complex architecture 

compared to GRU. It includes three gating 

mechanisms: the input gate, forget gate, and output 

gate. These gates control the flow of information and 

decide what to remember, forget, or output at each 

time step.
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• GRU: GRU has a simpler architecture compared to 

LSTM. It includes only two gating mechanisms: the 

reset gate and the update gate. These gates allow the 

GRU to selectively update and retain information in the 

hidden state.

Number of parameters

• LSTM: Because of its more complex architecture with 

three gating mechanisms, LSTM generally has more 

parameters compared to GRU.

• GRU: GRU has fewer parameters compared to 

LSTM due to its simpler architecture with two gating 

mechanisms.

Gate interactions

• LSTM: In LSTM, the input gate, forget gate, and output 

gate interact with each other separately, allowing the 

model to independently control the flow of information 

through each gate.

• GRU: In GRU, the reset gate and update gate interact 

with each other in a more integrated manner. The 

update gate acts as a combination of the input gate and 

forget gate in LSTM, controlling both updating and 

forgetting.

Handling long-term dependencies

• LSTM: LSTM is explicitly designed to capture long-term 

dependencies in sequential data. Its architecture with 

the input, forget, and output gates allows it to retain 

relevant information in the cell state for longer periods.
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• GRU: GRU is also effective in handling long-term 

dependencies but has a simpler gating mechanism, 

which may make it more efficient and easier to train in 

some cases.

Computation efficiency

• GRU: Because of its simpler architecture and fewer 

parameters, GRU may be computationally more 

efficient compared to LSTM. This makes GRU a 

preferred choice in scenarios where computational 

resources are limited.

LSTM and GRU are both effective in addressing the vanishing gradient 

problem and capturing long-term dependencies in sequential data. 

LSTM’s complex architecture with three gating mechanisms provides a 

more fine-grained control over information flow, making it suitable for 

tasks requiring precise memory management. On the other hand, GRU’s 

simpler architecture and fewer parameters make it an efficient alternative 

to LSTM, especially when computational resources are limited. The choice 

between LSTM and GRU depends on the specific task, available resources, 

and the trade-off between complexity and performance.

 Summary
In this chapter, we discussed the evolution of natural language processing 

and how different approaches—linguistic-based, statistical, machine 

learning-based—were applied for language modeling over the years. We 

also talked about some of the core concepts of NLP such as tokenization, 

word embeddings, and n-grams. Finally, we looked at RNN-based 

language models and the advantages they provide.
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While RNN-based language models have made significant 

contributions to NLP tasks, they have been partly surpassed by more 

recent architectures like transformers. Transformers, especially those 

used in models like BERT and GPT, have shown superior performance 

in capturing long-range dependencies and have become the de facto 

standard for many NLP tasks.

Transformers are the topic of our next chapter.
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CHAPTER 3

Transformers
In 2017, Ashish Vaswani et al. from Google Brain and Google Research 

proposed a revolutionary new architecture of neural networks for natural 

language processing (NLP) and other sequence-to-sequence tasks in their 

“Attention Is All You Need” paper. In this paper, Vaswani et al. presented 

a new approach that relies heavily on attention mechanisms to process 

sequences, allowing for parallelization, efficient training, and the ability to 

capture long-range dependencies in data.

This new architecture proved extremely effective and efficient to train, 

resulting in transformers having effectively replaced other approaches, 

such as RNNs and LSTMs, after their introduction.

At the core of the transformer architecture, and the key to its 

efficiency, is the attention mechanism. Therefore, let us look into how 

attention works.

 Paying Attention
In terms of neural networks and deep learning, attention is a mechanism 

that allows a model to focus on—or “pay attention to”—specific parts of 

the input data while processing it. It is inspired by the human cognitive 

process of selectively concentrating on certain elements of sensory 

information while ignoring others. Attention has proven to be a powerful 

tool in various tasks, particularly in NLP and computer vision.
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The initial idea of attention mechanisms dates back to the early 

machine learning concepts of the 1990s and has its origins in cognitive 

psychology and neuroscience, where researchers studied how humans 

selectively focus on specific information while processing sensory input 

and how that behavior can be utilized in machine learning models.

One of the notable early works that utilized attention mechanisms 

was the work “Neural Turing Machine” by Graves et al. (2014), which 

introduced a differentiable memory addressing mechanism that allows 

neural networks to access external memory using attention. An application 

of attention used with computer vision was shown by Xu et al. in “Show, 

Attend and Tell: Neural Image Caption Generation with Visual Attention” 

in 2015, which used attention to improve image captioning by focusing on 

different parts of an image while generating each word of the caption.

Attention mechanisms gained prominence with the development 

of sequence-to-sequence models. In tasks such as machine translation, 

the model needs to capture long-range dependencies between the 

input and output sequences. “Neural Machine Translation by Jointly 

Learning to Align and Translate” by Bahdanau et al. (2015) introduced the 

attention mechanism in the context of machine translation. This attention 

mechanism allowed the model to align different parts of the source and 

target sentences.

In 2017, Vaswani et al., in their “Attention Is All You Need” paper, 

further improved the concept by introducing self-attention, scaled dot 

product, and multihead attention mechanisms.

The attention mechanism works by enabling the model to focus on 

the most relevant information while generating the output by assigning 

different weights to different parts of the input sequence. Figure 3-1 shows 

a visualization of an example of learned dependencies from an attention 

module of a transformer model.
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Figure 3-1. A visualization of an example learned dependencies from 
an attention module of a transformer model. Source: “Attention Is All 
You Need” by Vaswani et al.

These long-distance relationships learned during the training phase 

allow the model to focus on what is important in a sequence as well as 

predict the next element in a sequence. Figure 3-2 shows a visualization of 

how next-word dependencies can be derived.
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Figure 3-2. A visualization of how next-word dependencies can be 
derived. Source: “Attention Is All You Need” by Vaswani et al.

The typical attention mechanism has three main components: the 

queries (Q), keys (K), and values (V).

Query (Q)

• The query vector represents the current element for 

which attention is being computed.

• It is a learned vector that captures the properties or 

features of the current element.

Key (K)

• The key vectors represent other elements in the 

sequence.

• They are also learned vectors that encode the 

properties or features of these other elements.
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Value (V)

• The value vectors hold information or content 

associated with each element in the sequence.

• They are used to compute the weighted sum of values 

based on attention scores.

To build the attention scores, the following functions are applied to the 

components.

Attention scores

• Attention scores quantify the relevance or similarity 

between the Query vector and the Key vectors.

• They are typically computed using the dot product 

between the Query and Key vectors.

Softmax function

• The softmax function is applied to the attention scores 

to obtain attention weights.

• The softmax operation converts the scores into a 

probability distribution, ensuring that the weights sum 

up to 1.

Weighted sum (context vector)

• The attention weights obtained from the softmax 

operation are used to compute a weighted sum of the 

Value vectors.

• The weighted sum is the context vector, which captures 

the contribution of each element to the current 

element’s representation.
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Figure 3-3 illustrates a simplified view of this workflow.

Figure 3-3. The attention mechanism workflow

These components work together to compute attention scores that 

determine how much each element contributes to the representation of 

the current element. The context vector obtained through the weighted 

sum of Value vectors reflects the importance of different elements in the 

sequence relative to the current element.

To better understand the attention mechanism workflow, let us look at 

a simplified code example of how attention scores are calculated. We will 

use Python for this.

We will need Numpy and Scipy libraries in Python for this.

import numpy as np

from numpy import array

from numpy import random

from scipy.special import softmax
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We will start by defining the embeddings of four words. In practice, 

these word embeddings are calculated. But for simplicity we will define 

them manually here.

word_1_em = array([1, 1, 0])

word_2_em = array([0, 1, 1])

word_3_em = array([1, 0, 1])

word_4_em = array([0, 0, 1])

We will stack these together to get the word matrix.

words = np.stack((word_1_em, word_2_em, word_3_em, word_4_em))

print(words)

Output:

[[1 1 0]

 [0 1 1]

 [1 0 1]

 [0 0 1]]

Next, we will initialize the weight matrices for queries, keys, and values. 

The word embeddings will be multiplied with these to generate the query, 

key, and value matrices in the next step. In practice, these weights will be 

learned by the model during training. Here we are initializing them with 

random values for simplicity.

W_Q = random.randint(3, size=(3, 3))

W_K = random.randint(3, size=(3, 3))

W_V = random.randint(3, size=(3, 3))

Now we can generate the query, key, and value matrices using matrix 

multiplication.

Q = words @ W_Q

K = words @ W_K

V = words @ W_V
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Note the @ operator is used for matrix multiplication in python. It 
was introduced in python 3.5.

We then calculate the score values for the queries against all the key 

vectors, again using matrix multiplication.

scores = Q @ K.transpose()

The score values are then passed to the softmax function to calculate 

the weight values. Typically, at this step, the score values are divided by 

the square root of their dimensionality before being passed to the softmax 

function. This is done to overcome the vanishing gradient problem. This 

approach is known as the scaled dot product. We will discuss it in detail in 

the next section.

weights = softmax(scores / K.shape[1] ** 0.5, axis=1)

Finally, the attention values for the words can be calculated using 

these weights.

attention = weights @ V

print(attention)

Output:

[[3.11697171 1.70806649 1.86853077]

 [2.97681807 1.62234515 1.91717725]

 [2.98420993 1.74276532 1.94358637]

 [2.59605139 1.68473833 2.12315889]]

The complete code for this example looks like this:

import numpy as np

from numpy import array

from numpy import random

from scipy.special import softmax
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# setting the seed for the random functions, allowing us to 

reproduce the values

random.seed(101)

# defining word embeddings of 4 words

word_1_em = array([1, 1, 0])

word_2_em = array([0, 1, 1])

word_3_em = array([1, 0, 1])

word_4_em = array([0, 0, 1])

# stacking all the words to get a single word matrix

words = np.stack((word_1_em, word_2_em, word_3_em, word_4_em))

print(words)

# randomly initialize the weight matrices for queries, keys, 

and values

W_Q = random.randint(3, size=(3, 3))

W_K = random.randint(3, size=(3, 3))

W_V = random.randint(3, size=(3, 3))

# generating the query, key, and value matrices

Q = words @ W_Q

K = words @ W_K

V = words @ W_V

# calculating the scores for the queries against all 

key vectors

scores = Q @ K.transpose()

# computing the weights using softmax operation

weights = softmax(scores / K.shape[1] ** 0.5, axis=1)

# computing the attention by a weighted sum of the 

value vectors
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attention = weights @ V

print(attention)

The attention mechanism enables the model to capture relationships 

and dependencies between elements and is a fundamental building block 

in sequence modeling tasks.

 The Transformer Architecture
The paper “Attention Is All You Need” explains that while recurrent neural 

network (RNN) architectures such as long short-term memory (LSTM) 

and gated recurrent networks (GRN) have firmly established at the time 

as the de facto approaches for sequence modeling tasks such as language 

modeling and machine translation, progress to push their capabilities 

further has been slow due to some fundamental limitations of such 

architectures. RNN-based models have limited parallelization options 

because they naturally require sequential computing.

The transformer architecture overcomes this limitation by forgoing 

any recurrent components and instead relying entirely on attention 

mechanisms. ConvS2S and ByteNet models, which were used for 

sequence-to-sequence modeling prior to transformers, require an 

increasing number of operations to calculate long-range dependencies as 

the distance between the elements increases. The number of operations 

in ConvS2S increases linearly and logarithmically in ByteNet with the 

distance. In transformers, with self-attention, this can be reduced to a 

constant number of operations.

Self-attention, also known as intra-attention, is a generalized version 

of traditional attention mechanisms that relate different positions of a 

single sequence to build a representation of the sequence. By using self- 

attention, the transformers architecture is able to both parallelize the 

operations as well as improve the performance of single operations.
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Figure 3-4 shows the architecture of a transformer.

Figure 3-4. The transformer architecture

The following are the components of the transformer architecture:

• Tokenizers, which convert text into tokens

• Embedding layers, which convert tokens into 

semantically meaningful representations
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• Transformer layers, which carry out the reasoning 

capabilities, and consist of attention and multilayer 

perceptron (MLP) layers

The transformer layers can be of two types: encoder and decoder.

The original architecture of Vaswani et al. used both encoders and 

decoders. Some later variations of the transformer model used one or the 

other, such as generative pre-trained transformer(GPT) models, which 

are decoder-only, while bidirectional encoder representations from 

Transformers (BERT) models are encoder-only.

 The Encoder
Transformers typically use byte pair encoding to tokenize the input. Unlike 

many other NLP architectures that use traditional word embeddings 

like Word2Vec or GloVe, transformer models are unique in using a 

combination of token embeddings, positional encodings, and other 

specialized embeddings (such as segment embeddings in BERT) to 

effectively capture both content and sequential context. In more recent 

variants of transformers (such as GPT-3 and beyond), the concept of 

subword embeddings and byte pair embeddings has gained prominence. 

These embeddings enable the model to handle out-of-vocabulary words 

and provide a more fine-grained representation of words by breaking them 

down into smaller units.

The encoder, shown in Figure 3-5, is a stack of N identical layers. In the 

implementation of the original paper, this was set to 6 layers (N=6). Each of 

these layers is composed of two sublayers, which are as follows:

• The first is a multihead self-attention mechanism.

• The second is a fully connected feed-forward network 

(multilayer perceptron) consisting of two linear 
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transformations with rectified linear unit (ReLU) 

activation in between.

Figure 3-5. The encoder

The N layers of a transformer encoder apply the same linear 

transformations—with each layer employing different weight and bias 

parameters—to all the words in the input sequence. Each of the two 
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sublayers has a residual connection around them and is succeeded by a 

normalization layer.

The encoder’s main goal is to capture relevant information from the 

input sequence and create a higher-level representation that can be used 

by downstream tasks or passed to the decoder for generating output 

sequences.

As the transformer architecture does not use recurrence, it inherently 

cannot capture information about the relative positions of the words in the 

sequence. To overcome this, the positional information has to be injected 

into the input embeddings, which is done by introducing positional 

encodings.

The positional encoding vectors have the same dimension as the 

input embeddings. These are generated using sine and cosine functions of 

different frequencies. Then, they are summed to the input embeddings in 

order to inject the positional information.

 The Decoder
The decoder, shown in Figure 3-6, is a stack of N identical layers. In the 

implementation of the original paper, this was set to 6 layers (N=6). Each of 

these layers is composed of three sublayers, which are as follows:

 1. The first sublayer receives the output of the previous 

decoder stack. It then augments it with positional 

information and implements multihead self-

attention over it. The decoder is designed to attend 

only to the preceding words, as opposed to the 

encoder, which is designed to attend to all words 

in the input sequence, disregarding their position 

in the sequence. Thus, the prediction for a word 

at a given position will only depend on the known 

outputs for the words that come before it in the 
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sequence. This is achieved by introducing a mask 

over the values that are produced by the scaled 

multiplication of the Q and K matrices (Query and 

Key metrics we discussed in attention mechanisms) 

in the multihead attention mechanism of the 

decoder.

 2. The second sublayer implements a multihead 

self-attention mechanism similar to the one in the 

encoder. This multihead mechanism of the decoder 

receives the queries from the previous decoder 

sublayer with the keys and values from the output of 

the encoder, which allows the decoder to attend to 

all the words in the input sequence.

 3. The third sublayer implements a fully connected 

feed-forward neural network, which is similar to the 

one in the encoder.
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Figure 3-6. The decoder

Similar to the encoder, the sublayers on the decoder also have 

residual connections around them. These sublayers are succeeded by a 

normalization layer similar to the encoder, and positional encodings are 

added to the input embeddings in the same way as the encoder.

The output embeddings of the decoder are offset by one position. This, 

combined with the masking (in the masked multihead attention layer), 

ensures that the predictions for any given position “will depend only on 

the known outputs at positions less than i.”
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Along with the transformer architecture, the original paper introduced 

two other important concepts: the scaled dot product and multihead 

attention.

 Scaled Dot Product
The scaled dot product was introduced to overcome the vanishing gradient 

problem. As discussed in the previous chapter, the vanishing gradient 

problem occurs when the gradient in backpropagation becomes so small 

that it prevents the network from learning further.

Let us look at a simple code example to understand the scaled dot 

product.

Note We are using python code for the example.

Suppose we create a normal distribution that has a mean of 0 and a 

standard deviation of 100.

a = np.random.normal(0,100,size=(10000))

If we plot the histogram of that distribution, it will look like Figure 3-7.

plt.hist(a)
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Figure 3-7. Histogram of a normal distribution that has a mean of 0 
and a standard deviation of 100

If we plot the softmax of the distribution, it will look like Figure 3-8.

plt.plot(softmax(a))

Figure 3-8. Softmax output of the distribution
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Now, assume we use these softmax values for backpropagation. While 

the peak values would backpropagate, the other values (which are near 

zero) would get lost due to their significantly smaller values, resulting in a 

vanishing gradient.

To overcome this, we can scale the original distribution to a standard 

deviation of 1 (the original has a standard deviation of 100) by dividing it 

by the square root of the dimentionality.

unit_a = a / 100

Plotting the histogram of the original and scaled distributions will look 

like Figure 3-9.

fig, (ax1, ax2) = plt.subplots(1, 2)

ax1.hist(a)

ax2.hist(unit_a)

Figure 3-9. The normal and scaled distributions

The histograms are identical except for the scale.

If we now plot the softmax of the two distributions, it would look like 

Figure 3-10.

fig, axs = plt.subplots(2, 2)

axs[0, 0].hist(a)

axs[0, 0].set_title('Original Distribution')
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axs[0, 1].hist(unit_a)

axs[0, 1].set_title('Scaled Distribution')

axs[1, 0].plot(softmax(a))

axs[1, 0].set_title('Softmax of Original')

axs[1, 1].plot(softmax(unit_a))

axs[1, 1].set_title('Softmax of Scaled')

Figure 3-10. The normal and scaled distributions with their 
softmax output

These scaled softmax values have a higher chance of backpropagating 

properly and allowing the model to train successfully.

The complete code for the previous example is as follows:

import numpy as np

import matplotlib.pyplot as plt

from scipy.special import softmax
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from matplotlib import style

plt.style.use('ggplot')

a = np.random.normal(0,100,size=(10000))

plt.hist(a)

plt.plot(softmax(a))

unit_a = a / 100

print(np.std(a))

print(np.std(unit_a))

plt.rcParams['figure.figsize'] = [12, 4]

fig, (ax1, ax2) = plt.subplots(1, 2)

ax1.hist(a)

ax2.hist(unit_a)

plt.rcParams['figure.figsize'] = [12, 8]

fig, axs = plt.subplots(2, 2)

axs[0, 0].hist(a)

axs[0, 0].set_title('Original Distribution')

axs[0, 1].hist(unit_a)

axs[0, 1].set_title('Scaled Distribution')

axs[1, 0].plot(softmax(a))

axs[1, 0].set_title('Softmax of Original')

axs[1, 1].plot(softmax(unit_a))

axs[1, 1].set_title('Softmax of Scaled')

In traditional attention modules, there are dot product and softmax 

operations, making them susceptible to the vanishing gradient problem. 

As shown, scaling the output of the dot product to have a standard 

deviation of 1 makes the softmax output less susceptible to the vanishing 

gradient problem. Figure 3-11 shows the steps of the scaled dot product.
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Figure 3-11. Scaled dot product

The input of scaled dot product consists of queries and keys (with 

dimension dk) and values (with dimension dv). The dot products will 

be computed of the query with all keys, divided each by dk, and finally 

applying a softmax function to obtain the weights on the values.

 Multihead Attention
Instead of using a single attention mechanism multihead attention 

mechanism linearly projects the queries, keys, and values h times and uses 

a different learned projection for each of them. Single attention is then 

applied to each of these h projections in parallel to produce h outputs. 

These outputs are then concatenated and projected again to produce a 

final result. Figure 3-12 shows the multihead attention mechanism.
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Figure 3-12. The multihead attention mechanism

The multihead attention mechanism allows the model to attend to 

information from different representation subspaces at different positions, 

which is not achievable from a single-head implementation. Figure 3-13 

shows an example visualization of how two heads of the same layer have 

learned different representations.
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Figure 3-13. Example visualization of how two heads of the same 
layer have learned different representations. Source: “Attention Is All 
You Need” by Vaswani et al.

With multihead attention, the total computational cost is closer to 

a single-head attention with full dimensionality because of the reduced 

dimensionality of each head. This improves the training efficiency 

massively by allowing parallelism as well as improved efficiency in each 

parallel path.
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 Summary
With our understanding of the core concepts of NLP from the previous 

chapter, we looked at the transformer architecture and attention 

mechanism in this chapter. The attention mechanisms allowed language 

models to focus on the important parts of the input sequence. The 

transformer architecture took that concept further by focusing entirely on 

attention mechanisms to overcome the limitations of RNN-based models.

The introduction of the transformer architecture revolutionized the 

NLP field. The efficiency improvements introduced by it are directly 

responsible for the emergence of large language models.

Large language models are the topic of our next chapter.
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CHAPTER 4

What Makes LLMs 
Large?
By now you should have a high-level understanding of the concepts of 

natural language processing and how the transformer architecture and 

attention mechanisms revolutionized the NLP field and how it changed 

the way we look at language modeling. Now we are ready to step into our 

main topic: large language models.

You might be wondering what makes a large language model. Is an 

LLM the same as a transformer? And, more importantly, why do we call 

them “large” language models?

Let’s find out.

 What Makes a Transformer Model an LLM
You may see that in many instances of talking about LLMs that the terms 

transformer model and large language model are used interchangeably. 

However, there is a difference as well as a connection between 

transformers and LLMs.

A transformer, as we learned in the previous chapter, specifically 

refers to a type of neural network architecture that was introduced in the 

Google Brain and Google Research paper “Attention Is All You Need” 

by Vaswani et al. in 2017 (https://arxiv.org/abs/1706.03762). This 

https://doi.org/10.1007/979-8-8688-0017-7_4
https://arxiv.org/abs/1706.03762
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is the architecture that uses the attention mechanism and different 

arrangements of encoder/decoder blocks for language modeling. 

There are variations of the model with encoder-decoder, encoder-only, 

or decoder-only in different implementations catering to different 

requirements. The capabilities as well as the efficiency of the transformer 

architecture has made it the basis for many large language models.

The term large language model generally refers to a language model 

that has a large number of parameters and is trained on a massive dataset. 

As mentioned, most large language models use some variation of the 

transformer architecture. In terms of AI models, parameters are the 

aspects of the model that are learned from the training data during the 

training process. Typically, the larger the number of parameters, the more 

the model can learn. Modern large language models can have hundreds 

of billions of parameters. As an example, GPT-3 is estimated to have 175 

billion parameters.

Therefore, following factors are what makes a transformer into a large 

language model.

 Number of Parameters
One of the defining features of a “large” language model is the number 

of parameters it has. More parameters generally mean the model can 

learn more complex representations of the data, though it also increases 

computational requirements.

 Scale of Data
These models are trained on enormous datasets that can range from 

hundreds of gigabytes to terabytes in size. This allows them to learn from a 

wide variety of textual contexts.
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 Computational Power
Training large language models requires significant computational 

resources, often involving specialized hardware like GPUs or TPUs running 

in parallel across multiple machines.

 Fine-Tuning and Task Adaptation
Once a large language model is trained, it can be fine-tuned on specific 

tasks or datasets to improve its performance in specialized applications.

 Capabilities
Because of their size and complexity, large language models often 

display capabilities that surpass smaller models, such as better context 

understanding, error correction, and even some level of commonsense 

reasoning.

In summary, a transformer becomes a “large language model” when it 

is scaled up in terms of parameters, trained on a large and diverse dataset, 

and optimized to perform a wide array of language tasks effectively.

It should also be noted that transformers are not the only architecture 

that is capable of building large language models. Recurrent neural 

network (RNN) models such as long short-term memory (LSTM) networks 

as well as convolutional neural network (CNN) models are capable of 

creating large language models. However, because of the groundbreaking 

performance as well as the training efficiency demonstrated by 

transformer models, the vast majority of LLMs we see today are based on 

the transformer architecture.
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 Why Parameters Matter
The number of parameters in a neural network model is a critical aspect 

that often corresponds to the model’s capacity to learn and represent 

information. In the context of transformers, the number of parameters 

represents the following:

• Capacity to learn: The number of parameters in a 

model often relates to its ability to fit a given dataset. 

With more parameters, a model has a greater capacity 

to capture nuances and complexities in the data.

• Expressiveness: A large number of parameters allows 

the model to represent more intricate functions, 

making it possible for the model to generalize better to 

unseen data, provided it is trained appropriately and 

doesn’t overfit.

• Memory: In the context of transformers, having more 

parameters essentially means that the model has a 

broader “knowledge” base. For instance, models like 

GPT-3 with 175 billion parameters have shown an 

ability to remember and generate information across a 

vast range of topics.

However, when scaling up a transformer model, there are some  

trade- offs that need to be considered.

 Computational Requirements
As the number of parameters increases, so do the computational 

requirements for training. Training large models necessitates powerful 

GPUs or TPUs and can be time-consuming and expensive.
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 Risk of Overfitting
A model with an excessive number of parameters, when trained on limited 

data, can memorize the training data (rather than generalizing from it). 

This results in overfitting, where the model performs well on the training 

data but poorly on unseen data.

 Model Size
Having more parameters means larger model sizes, which can be a 

concern for deployment, especially on edge devices or in real-time 

applications.

The unique architecture of transformers provides several aspects that 

allow the number of parameters to scale up:

• Depth and width: Transformers can have many layers 

(depth), and each layer can have a large number of 

neurons or attention heads (width). Both factors 

contribute to the total parameter count.

• Embedding layers: The initial embedding layer, 

which converts input tokens into vectors, can have a 

significant number of parameters, especially when the 

vocabulary size is large.

• Attention mechanisms: Self-attention mechanisms, 

which are central to transformer architectures, involve 

multiple weight matrices that contribute to the overall 

parameter count.

While increasing the number of parameters generally improves the 

model’s performance on many tasks, many neural network models have 

a point of diminishing returns. However, recent trends, especially in the 

development of models like GPT-3, have shown that continually scaling up 

Chapter 4  What Makes LLMs Large?



86

can lead to surprising improvements in performance, enabling capabilities 

such as few-shot (where the model is trained to perform tasks with very 

little labeled data by leveraging its pre-trained knowledge) or even zero- 

shot (where the model is trained to generalize to tasks without having any 

labelled data for that specific task) learning. This may indicate that we have 

not yet reached the limit of the capabilities of transformer models, and the 

current limitations could be computational power and data scale.

 The Scale of Data
The scale of data used to train a model is a crucial component in 

determining the model’s effectiveness, especially for transformers like 

those used in large language models, because of the following factors.

 Model Generalization

The more data a model is exposed to during training, the better its ability 

to generalize to unseen examples. This is particularly true for models 

with a large number of parameters. The vast parameter count offers the 

potential to learn a lot, but it also brings the risk of overfitting. A massive 

dataset can mitigate this risk.

 Diverse Knowledge

A large-scale dataset provides a wealth of diverse information. For a 

language model, this means understanding different writing styles, topics, 

facts, and even languages.

 Rare Scenarios

Big datasets can capture less common, edge-case scenarios, which might 

not be present in smaller datasets. This allows the model to respond to 

more niche queries or situations.
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Large language models typically use a combination of existing text 

corpus as well as sourcing data from the Internet, encompassing websites, 

books, articles, and other textual content. The following are some of the 

commonly used corpus:

• Common Crawl: This is a vast web corpus collected by 

crawling the Internet. It contains petabytes of data from 

billions of web pages and is one of the most extensive 

datasets available. Models like GPT-3 have been known 

to use subsets of Common Crawl.

• Wikipedia: Because of its comprehensive coverage of 

knowledge and structured writing, Wikipedia dumps 

(in various languages) are frequently used for training 

language models.

• BooksCorpus: This contains more than 11,000 books, 

totaling about 5 billion words, from diverse genres and 

subjects.

• OpenSubtitles: This is a dataset containing subtitles 

from movies and TV shows. It’s especially useful for 

training conversational models because of its dialogue- 

heavy content.

• WebText: Used by OpenAI for training GPT-2, it’s a 

collection of web pages amounting to about 40GB of 

text data.

• Toronto Book Corpus: This is similar to BooksCorpus 

but contains different books, amounting to more than 

44 million words.

• English Gigaword: This contains a significant amount of 

newswire text data, making it rich in current events and 

journalistic language.
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• Stanford Question Answering Dataset (SQuAD): While 

it’s primarily designed for question-answering tasks, 

the dataset, which contains passages from Wikipedia 

and associated questions, can be beneficial in training 

models to understand context.

• Microsoft MAchine Reading COmprehension Dataset 

(MS MARCO): This contains real-world questions and 

answers, making it valuable for training models on 

practical, user-generated queries.

• Common datasets for translation tasks: These include 

Workshop on Machine Translation (WMT) datasets, 

European Parliament Proceedings (Europarl), and 

United Nations documents (MultiUN) for training 

multilingual models.

• LM1B: This is a benchmark dataset for language 

modeling containing 1 billion words from the One 

Billion Word Benchmark.

• Penn Treebank: While smaller than many other 

datasets, this is a staple in linguistic and syntactic 

analyses, containing tagged, parsed, and raw Wall 

Street Journal data.

Gathering the data from these and other corpora, as well as from 

Internet sources, is followed by a data filtering and cleaning step. This is 

because not all collected data might be useful. It might have errors, be 

redundant, or be unsuitable for training. Proper preprocessing, cleaning, 

and filtering are essential to ensure the model learns from high-quality 

data. Model-specific per-processing steps such as tokenization are applied 

afterward.

However, as with the parameters, scaling up the data brings its own 

challenges.
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 Computational Overheads

Training on a massive dataset requires high computational power and 

memory. Parallel processing, often spanning multiple GPUs or TPUs, 

becomes a necessity.

 Storage

Simply storing huge datasets necessitates significant storage solutions, 

often distributed across multiple devices or cloud storage solutions.

 Data Bias

Large datasets sourced from the Internet can contain biases present in 

the content. This means models can inadvertently learn and perpetuate 

these biases.

 Noise

With scale comes noise. Some incorrect or misleading information may 

be present in vast datasets, which the model might learn if not properly 

cleaned.

Transformers, with their attention mechanisms, are particularly 

suited to benefit from large-scale data. The self-attention mechanism can 

learn intricate patterns, relationships, and dependencies present in vast 

datasets, enabling the model to capture deep semantic relationships in 

language. The breakthroughs observed in models like GPT-2 and GPT-3 

can be attributed in part to the enormous scale of data they were trained 

on. When combined with the models’ large parameter counts, this data 

scale allows them to exhibit remarkable language understanding and 

generation capabilities.
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 Types of LLMs
Large language models can be categorized based on various factors such 

as architecture, training objectives, data types, and applications. Let us see 

a few of these factors and categorizations.

 Based on the Architecture
As we discussed earlier, there are several architectures that can be used to 

build LLMs.

 Transformers

Most of today’s large language models, such as Generative Pre-trained 

Transformer (GPT), Bidirectional Encoder Representations from 

Transformers (BERT), and Pathways Language Model (PaLM), are based 

on the Transformer architecture.

 Recurrent Neural Networks

Older language models often used recurrent neural networks (RNNs) or 

variations like long short-term memory (LSTM) and gated recurrent units 

(GRUs), although these are less common for very large models because of 

scaling limitations.

 Convolutional Neural Networks

Although less common for language tasks, some models have employed 

CNN architectures for text classification and other NLP tasks.
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 Based on the Training Objective
The training objectives of large language models can vary based on the 

specific tasks they are designed to perform or the kinds of abilities they 

are expected to possess. A single model may have one or more training 

objectives.

• Autoregressive models: Like GPT, these models generate 

one word at a time and use previously generated words 

as context for future words.

• Autoencoding models: BERT is an example that is 

trained to predict masked-out words in a sentence, and 

it processes the entire sequence at once.

• Sequence-to-sequence (Seq2Seq) models: These 

are often used for translation, summarization, and 

other tasks where both input and output can be of 

variable lengths. Examples include OpenNMT and 

Tensor2Tensor (T2T).

• Hybrid models: Some models, like XLNet, combine 

elements of both autoregressive and autoencoding 

approaches.

Let us look into few of these categories in detail.

 Autoregressive Models

Autoregressive models are models trained to generate text one token 

(usually a word or a subword) at a time. They leverage the concept of 

autoregression, where the prediction of each new token is conditioned on 

the previously generated tokens.

The following are some key features of autoregressive models.
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Sequential Generation

Autoregressive models generate text in a left-to-right manner, predicting 

one token at a time based on the tokens that have come before it. This is in 

contrast to “autoencoder” models like BERT, which predict missing words 

in an entire sequence in parallel.

Contextual Understanding

Because they rely on previously generated text, autoregressive models are 

good at maintaining context in a conversation or text. This makes them 

suitable for tasks such as dialogue generation, storytelling, and even code 

writing.

Long-Range Dependencies

The architecture of these models, especially transformer-based ones like 

GPT, is capable of handling long-range dependencies in the text, allowing 

them to generate more coherent and contextually relevant text over 

extended sequences.

Causal Relationship

Autoregressive models maintain a causal relationship in the sequence 

where each token is generated based on a fixed history of preceding tokens 

and not future tokens. This is a crucial feature for many natural language 

understanding and generation tasks.
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The training process of an autoregressive model typically follows 

these steps:

• Data preprocessing: The model is usually trained on 

large datasets that are tokenized into smaller pieces, 

like words or subwords.

• Masking and loss function: During training, the 

model uses a mask to ensure that the prediction for a 

particular token does not have access to future tokens 

in the sequence. The most common loss function 

used is the cross-entropy loss between the predicted 

probabilities and the actual tokens.

• Parameter optimization: The model’s millions 

or billions of parameters are adjusted through 

backpropagation and optimization algorithms like 

Adam to minimize the loss function.

• Fine-tuning: Autoregressive models are often fine- 

tuned on specific tasks or datasets to make them more 

effective for specialized applications.

Autoregressive LLMs have many applications, such as the following:

• Natural language generation: This includes everything 

from chatbots to creative writing.

• Machine translation: Some autoregressive models are 

fine-tuned for translating between languages.

• Summarization: You can generate concise summaries 

of long documents.

• Question answering: You can generate answers to 

questions based on context or a given passage.
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• Code generation: Some specialized autoregressive 

models can write or complete code based on a prompt.

• Other NLP tasks: Though not strictly generative tasks, 

models like these can be adapted for classification, 

sentiment analysis, and more by adding specialized 

layers or training setups.

However, autoregressive models do have some limitations, a few of 

which are as follows:

• Speed: Since autoregressive models generate text one 

token at a time, they can be slower for generation tasks 

compared to parallel models.

• Repetition: These models can sometimes get stuck in 

loops and generate repetitive text.

• Lack of revision: Once a token is generated, it can’t be 

changed, which may lead to errors accumulating in 

long sequences.

• Context limit: There’s a maximum sequence length 

beyond which the model can’t maintain context, due to 

architectural limitations.

 Autoencoding Models

Autoencoding language models are designed to generate a fixed-size 

representation or “encoding” for a given input text. Unlike autoregressive 

models, which predict one word at a time based on previous words, 

autoencoding models take an entire sequence of words as input and 

predict some of those words in parallel.

The following are some key features of autoencoding models.
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Bidirectional Context

These models consider both the preceding and following words to predict 

a target word, thereby offering a bidirectional context. This is different 

from autoregressive models, which use only preceding words.

Masked Language Modeling

In training, some words in the input sequence are randomly masked out, 

and the model tries to predict them.

Fixed-Size Encoding

These models produce a fixed-size vector representation of the entire input 

sequence. This vector can capture the semantic meaning of the input and 

can be used for various downstream tasks.

Parallelism

Because masked words are predicted in parallel, training and inference 

with autoencoding models can be faster for certain types of tasks 

compared to autoregressive models.

The training of an autoencoding model typically involves the following:

• Data preprocessing: Text is tokenized into subwords or 

words, and some tokens are randomly replaced with a 

[MASK] token or other special tokens.

• Objective function: The model is usually trained using a 

cross-entropy loss function, where it tries to minimize 

the difference between the predicted probabilities for 

the masked words and the actual words.
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• Backpropagation: Gradients are computed based on 

the loss, and the model’s parameters are updated using 

optimization algorithms like Adam.

• Fine-tuning: Similar to autoregressive models, 

autoencoding models can be fine-tuned on specific 

tasks to adapt their capabilities.

The applications of autoencoding LLMs include the following:

• Text classification: The fixed-size encoding can be used 

to classify text into various categories.

• Named entity recognition: This can identify entities 

such as names, places, and organizations in text.

• Question answering: This can be adapted to provide 

specific answers based on the question and a given 

context.

• Sentiment analysis: This can classify the sentiment of a 

sentence or document as positive, negative, or neutral.

• Search engines: This can be used to understand and 

rank documents relevant to a query.

• Summarization: While not as straightforward as using 

sequence-to-sequence models, BERT-like models can 

still be adapted for text summarization tasks.

Autoencoding models also have certain limitations.

• Token limit: Like autoregressive models, these models 

also have a maximum sequence length, beyond which 

they can’t process text.
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• Lack of coherency: For sequence generation tasks, 

autoencoding models don’t naturally generate 

coherent and contextually relevant sequences as 

effectively as autoregressive models.

• Complexity: These models can be computationally 

expensive to train, particularly because the 

bidirectional context requires more computational 

resources to capture.

• Ambiguity: Sometimes the masked word can have 

multiple plausible replacements, making the task 

inherently ambiguous. The model is trained to predict 

the most likely word, which may not always be the most 

contextually appropriate one.

 Sequence-to-Sequence Models

Sequence-to-sequence (Seq2Seq) models are designed to transform an 

input sequence into an output sequence, where both the input and output 

sequences can have variable lengths. These models are often employed 

in tasks like machine translation, text summarization, and speech 

recognition.

The following are the key features of Seq2Seq models.

Encoder-Decoder Architecture

A typical Seq2Seq model consists of two main components: an encoder 

that processes the input sequence and compresses the information into 

a fixed-size “context vector,” and a decoder that generates the output 

sequence based on this context vector.
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Attention Mechanisms

Modern Seq2Seq models often use attention mechanisms to allow the 

decoder to focus on different parts of the input sequence for each element 

of the output sequence. This is particularly useful for handling long 

sequences and for tasks where the alignment between input and output is 

complex.

Variable-Length Sequences

Unlike fixed-size autoencoders, Seq2Seq models can handle input and 

output sequences of different lengths, making them extremely versatile.

Bidirectional Context in Encoder

The encoder often uses bidirectional layers (e.g., bidirectional LSTMs or 

GRUs) to capture the context from both directions of the input sequence.

The training of a Seq2Seq model includes the following:

• Data preparation: In training, pairs of input-output 

sequences are needed. For example, in machine 

translation, you would have pairs of sentences in two 

different languages.

• Teacher forcing: During training, the actual output 

from the training dataset (not the predicted output) is 

often fed into the decoder in the next time step to guide 

learning. This technique is known as teacher forcing.

• Loss function: A common loss function used is the 

cross-entropy loss between the predicted output 

sequence and the actual output sequence.
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• Training algorithms: Optimization algorithms like 

Adam or RMSprop are often used to adjust the model 

parameters to minimize the loss.

• Fine-tuning: Seq2Seq models can also be fine-tuned for 

specific domains or tasks to improve performance.

The following are some of the applications of Seq2Seq LLMs:

• Machine translation: Translating text from one 

language to another

• Text summarization: Generating a concise summary for 

a long document

• Question answering: Providing a precise answer to a 

question based on a given context

• Speech recognition: Converting spoken language into 

written text

• Image captioning: Generating textual descriptions 

of images

• Dialog systems: Used in chatbots and virtual assistants 

for generating conversational responses

The limitations of Seq2Seq models include the following:

• Complexity: The encoder-decoder architecture 

and attention mechanisms make these models 

computationally intensive to train.

• Data requirements: Seq2Seq models often require large 

annotated datasets, especially for complex tasks like 

machine translation.
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• Long sequences: While attention mechanisms 

have alleviated this issue to some extent, handling 

extremely long sequences is still challenging due to 

computational limitations.

• Lack of interpretability: The attention mechanism 

provides some insight, but the models are largely black 

boxes, making it hard to understand why they make 

specific decisions.

 Hybrid Models

Hybrid language models attempt to combine the strengths of different types of 

models or incorporate additional features to improve performance in specific 

tasks. While pure autoregressive, autoencoding, or sequence-to- sequence 

models are powerful in their own right, each has its limitations. Hybrid 

models aim to address these by fusing different architectures or techniques.

The following are some common types of hybrid models.

Autoregressive + Autoencoding

One common approach is to combine autoregressive and autoencoding 

models. For example, you could use an autoencoding model like BERT to 

generate a fixed-size representation of the input and then feed this into an 

autoregressive model like GPT to generate output text. This could be useful 

for tasks where you need both a deep understanding of the input and a 

coherent output, such as in complex question-answering systems.

Seq2Seq + Attention

While attention mechanisms are commonly used in Seq2Seq models, 

advanced hybrid versions might incorporate multiple types of attention 

mechanisms or mix attention with other techniques such as reinforcement 

learning for better performance.
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Incorporating External Knowledge

Some hybrid models are designed to interface with external databases 

or knowledge graphs, allowing them to pull in real-world facts when 

generating text.

Multimodal Models

These are hybrid models designed to handle multiple types of input (e.g., 

text and images or text and audio). GPT-3, for instance, has been adapted 

to generate image captions based on both text prompts and the images 

themselves.

Classifier + Generator

In tasks such as sentiment analysis followed by text generation, a 

classification model may first determine the sentiment of the input, and 

then an autoregressive model could generate a response that aligns with 

that sentiment.

Because of their nature, some unique training techniques are used 

with hybrid models, such as the following:

• Multi-objective loss function: When you’re combining 

different model types, you often have to optimize a 

loss function that’s a combination of the loss functions 

appropriate for each individual model.

• Two-step training: Sometimes, one part of the model is 

trained first, followed by the second part. For example, 

an autoencoder could be pre-trained on a large dataset 

and then fine-tuned along with an autoregressive 

model on a specific task.

• End-to-end training: In some cases, the entire hybrid 

model is trained together from scratch, although this 

can be computationally expensive.
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Some of the unique use cases of hybrid models include the following:

• Advanced question-answering: Hybrid models can 

be particularly effective for generating accurate and 

contextually relevant answers to complex questions.

• Summarization: Combining the strengths of different 

model types could lead to more coherent and factually 

accurate summaries.

• Multimodal tasks: When tasks involve multiple types 

of data, like text and images, hybrid models can be 

particularly effective.

Although they have their benefits, hybrid models have their own set of 

limitations.

• Computational complexity: Combining different 

architectures can lead to models that are even more 

computationally intensive to train and deploy.

• Overfitting: With more parameters and complexity, 

there’s an increased risk of overfitting, especially when 

not enough data is available.

• Interpretability: As models get more complex, it 

becomes increasingly difficult to understand why they 

make certain decisions.

• Engineering challenges: Building and maintaining 

hybrid models can be more complex and require 

specialized expertise.

Because the term hybrid is quite broad, it can be applied to a variety of 

architectures and is not limited to the previous examples. The overarching 

theme is the attempt to combine different techniques or models to 

overcome the limitations of using any single approach.
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 Other Training Objectives

Other than the language modeling objectives we discussed earlier, LLMs 

may have other training objectives associated with them based on their 

intended use. Some of these are as follows:

Text Classification Objectives

• Sentiment analysis: The objective is to classify the 

sentiment expressed in a text as positive, negative, or 

neutral.

• Topic classification: The model is trained to categorize 

texts into predefined topics or classes.

Information Retrieval Objectives

• Document ranking: The objective is to rank a set of 

documents based on their relevance to a query.

• Keyword extraction: The objective is to extract 

important terms or phrases from larger bodies of text.

Multimodal Objectives

• Image-text association: In multimodal models like CLIP 

and DALL-E, the model is trained to understand and 

generate associations between text and images.

• Audio-text association: Some models are trained to 

transcribe or understand spoken language and its 

relationship to written text.

Specialized Objectives

• Named entity recognition (NER): The objective is to 

identify named entities such as people, organizations, 

locations, etc., in a text.

Chapter 4  What Makes LLMs Large?



104

• Part-of-speech tagging: The model is trained to identify 

the part of speech for each word in a sentence.

• Dependency parsing: The objective is to identify 

grammatical relationships between words.

• Text generation: Some models are specialized for 

creative text generation, including poetry, storytelling, 

and more.

Other Objectives

• Few-shot learning: The model is trained to perform 

tasks with very little labeled data by leveraging its pre- 

trained knowledge.

• Zero-shot learning: The model is trained to generalize 

to tasks without having any labeled data for that 

specific task, often by understanding the task 

description in natural language.

• Multitask learning: The model is trained to perform 

multiple tasks simultaneously, often sharing a common 

representation to improve performance across tasks.

• Adversarial training: To improve robustness, some 

models are trained to withstand adversarial attacks, 

where small, carefully crafted changes to the input can 

mislead the model.

Different training objectives are often combined to create more 

versatile models, and task-specific objectives are often tackled by  

fine- tuning a pre-trained general-purpose model.
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 Usage-Based Categorizations
Apart from the architecture and the objectives, LLMs can also be broadly 

categorized based on their usage and input. The following are a few of 

those categories:

Based on Data Types

• Text-based models: Most large language models are 

trained primarily on text data.

• Multimodal models: These models are trained on 

multiple types of data, like text and images. DALL-E 

and CLIP by OpenAI are examples.

• Cross-lingual models: These are trained on text from 

multiple languages and can perform tasks across 

different languages without needing separate training 

for each.

Based on Applications

• General-purpose models: These are designed to handle 

a variety of tasks without being specialized for any 

particular one. Examples include GPT and BERT.

• Task-specific models: These are fine-tuned versions of 

general-purpose models, adapted for specific tasks 

such as text classification, sentiment analysis, or 

machine translation.

• Domain-specific models: These are trained or 

fine-tuned on specialized data from fields such as 

healthcare, law, or finance.

Chapter 4  What Makes LLMs Large?



106

• Conversational agents: Some large language models, 

like Meena by Google, are designed to improve 

conversational abilities for chatbots and virtual 

assistants.

• Code generation models: Models like GitHub’s Copilot 

are specialized for generating code based on natural 

language queries.

Different types of large language models may overlap in their 

characteristics. The landscape is continually evolving, with new types and 

hybrids appearing as the field progresses.

 Foundation Models
The term foundation models emphasizes the shift in machine learning 

from training models for individual tasks to a paradigm where a single, 

powerful model can serve as a foundation for a multitude of applications.

Foundation models refer to pre-trained models, typically of 

considerable size and capacity, that serve as a base or “foundation” upon 

which more specific applications or tasks can be built. While the term can 

technically apply to various domains, it’s often used in the context of large- 

scale machine learning models, especially in natural language processing.

The following are some key characteristics of foundation models.

 Pre-training on Broad Data
Foundation models are typically trained on vast and diverse datasets to 

learn a wide array of patterns, structures, and knowledge. This generalist 

pre-training phase is what enables them to serve as a “foundation.”
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 Fine-Tuning and Adaptability
Once pre-trained, foundation models can be fine-tuned or adapted to 

specific tasks or domains, inheriting the general knowledge from  

pre- training and specializing based on new, task-specific data.

 Transfer Learning
The essence of foundation models lies in transfer learning, where 

knowledge gained during one task is transferred to improve performance 

on a different, yet related, task.

 Economies of Scale
Given the resources required to train large models, it’s often more efficient 

to train a single, large foundation model that can serve multiple purposes 

rather than training separate models for each specific task.

Large language models are considered foundation models because 

they exhibit properties and characteristics that position them as 

foundational building blocks for a plethora of applications.

The following are some of the characteristics of LLMs that make them 

foundation models.

 General-Purpose Abilities
LLMs are trained on vast and diverse text corpora, enabling them to handle 

a wide range of tasks out of the box, from simple text generation to more 

complex tasks such as summarization, translation, and  

question- answering.
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 Fine-Tuning Capabilities
Once pre-trained on a broad dataset, LLMs can be fine-tuned on specific 

tasks or domain-specific data, making them adaptable to various 

specialized applications.

 Transfer Learning
The knowledge captured by LLMs during their extensive pre-training can 

be transferred and utilized in numerous applications, reducing the need 

for task-specific data or training.

 Economies of Scale
Training LLMs requires significant computational resources. But once 

trained, they can serve countless applications, providing a cost-benefit 

when distributed across multiple tasks or domains.

 Rapid Deployment
With LLMs as a foundation, developers can rapidly prototype and deploy 

applications. For instance, with just a well-crafted prompt, GPT-3 can 

perform tasks that traditionally would require specialized models.

 Interdisciplinary Applications
Beyond text-centric tasks, LLMs have been utilized in areas like code 

generation, art creation, and even scientific domains, underscoring their 

foundational nature.
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 Reduced Training Overhead
Instead of training a model from scratch for every specific task, developers 

can leverage the foundational knowledge of LLMs, reducing the data 

requirements and computational overhead for many applications.

 Continuous Adaptability
LLMs have the potential to adapt to new information and trends either by 

continuous training or by combining them with other models and systems.

 Democratization of AI
Given the right interfaces and platforms, nonexperts can tap into the 

capabilities of LLMs, enabling a broader set of users to benefit from AI 

without deep technical knowledge.

 Applying LLMs
While having general-purpose abilities, when applying large language 

models for a specific task or a domain, often you would need to tune them 

for that specific task or domain in order for them to be more effective in 

it. This can be done in two ways: using prompt engineering and/or using 

fine-tuning.

 Prompt Engineering
Prompt engineering refers to the art and science of crafting effective 

input prompts to guide the behavior of large language models, especially 

when seeking specific or nuanced responses. As large models like GPT-3 

or GPT-4 do not have traditional “task-specific” configurations, the way 
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you phrase or structure the input prompt can significantly influence the 

output. This has been especially noted in zero-shot, few-shot, or many- 

shot learning scenarios.

The following are the key aspects of prompt engineering:

• Precision: Crafting prompts that help the model 

understand exactly what kind of information or format 

you are seeking.

• Context: Providing enough background or context to 

guide the model to generate relevant outputs.

• Examples: In few-shot learning scenarios, giving the 

model a couple of examples to demonstrate the desired 

task can help in eliciting the right kind of response.

• Rephrasing: If a model doesn’t produce the desired 

output with a given prompt, rephrasing the question or 

request might yield better results.

• Constraints: Specifying constraints in the prompt to 

restrict or guide the model’s responses. For instance, 

asking the model to “explain in simple terms” or 

“provide an answer in less than 50 words.”

In terms of LLMs, the following principles can be used for optimizing 

the prompts.

 Explicitness
Being clear and precise in the instruction can help the model grasp the 

exact requirement. For instance, instead of asking “Tell me about apples,” 

you might say “Provide a 200-word summary about the nutritional benefits 

of apples.”
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 Examples as Guidance
Providing examples can be a way to demonstrate the expected output. 

For instance, if you’re trying to get the model to transform sentences 

into questions, you might provide an example: “Transform the following 

sentences into questions. Example: ‘It is raining’ becomes ‘Is it raining?’”

 Iterative Refinement
Prompt engineering often involves an iterative process of refining the 

input based on the outputs received. If a particular phrasing doesn’t work, 

rephrasing or providing additional context can be helpful.

 Controlling Verbosity and Complexity
Directives like “in simple terms,” “briefly explain,” or “in detail” can guide 

the length and depth of the model’s response.

 Systematic Variations
Trying systematic variations of prompts helps in understanding the kind of 

phrasing that works best for a particular task.

Prompt engineering is extremely important because of the following 

factors:

• Optimal outputs: Even with a highly capable model, the 

quality of the output often depends on how the input 

is framed. Effective prompt engineering ensures you’re 

getting the most out of the model.

• Handling ambiguity: Language can be inherently 

ambiguous. By refining prompts, users can reduce 

ambiguity and guide the model toward the most 

relevant interpretation of their query.
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• Task customization: Since large models like GPT-3 

aren’t trained for specific tasks in the traditional 

sense, prompt engineering allows users to effectively 

“customize” the model for a wide array of tasks without 

needing to retrain it.

There are several techniques that can be employed to engineer 

prompts when working with LLMs:

• Prompt templates: Creating templates where only 

specific parts of the prompt change can help in 

achieving consistency, especially in tasks like data 

extraction.

• Prompt concatenation: Sometimes combining multiple 

prompts or instructions in a sequence can guide the 

model better. For instance, “Translate the following 

English text to French. Ensure the translation is suitable 

for a formal business setting.”

• Question decomposition: For complex queries, breaking 

down the prompt into multiple simpler questions 

might yield more accurate answers.

• Prompt priming: Introducing a context or “priming” 

the model with a statement can sometimes help. For 

example, “Pretend you are a history teacher. Explain 

the significance of the Renaissance period.”
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Prompt engineering gives several benefits when applying LLMs to 

specific tasks:

• Versatility: Through prompt engineering, a single  

pre- trained model can be “repurposed” for a wide  

array of tasks without the need for fine-tuning.

• Efficiency: It offers a quicker way to adapt the model to 

new tasks, especially when compared to retraining or 

fine-tuning.

• Customizability: Different users or applications might 

have unique requirements, and prompt engineering 

provides a way to customize model outputs without 

changing the underlying model.

However, there are some limitations and challenges with prompt 

engineering as well:

• Inconsistency: Even with an optimized prompt, models 

might occasionally produce inconsistent or unexpected 

outputs.

• Overhead: Effective prompt engineering can 

require extensive trial and error, which might be 

computationally or time-expensive.

• Domain limitations: For very niche or specialized tasks, 

prompt engineering might not suffice to achieve high 

accuracy, and fine-tuning on domain-specific data 

might be necessary.

• Trial and error: Finding the right prompt might 

require several iterations, especially for complex or 

nuanced tasks.
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• Overfitting to prompts: If users are too specific or rely 

heavily on prompt examples, the model might overfit to 

those examples, which can reduce the generality of its 

outputs.

• Predictability: Even with good prompts, the inherent 

randomness in model outputs means results might not 

always be entirely consistent.

Prompt engineering is a blend of understanding the model’s 

capabilities, linguistic nuances, and the specific requirements of a 

task. As transformer-based models grow in size and capability, prompt 

engineering stands out as a crucial skill to harness their potential fully. It’s 

an active area of research and experimentation, with both the AI research 

community and industry professionals exploring novel strategies to 

optimize interactions with these models.

 Fine-Tuning
In certain scenarios, domains, or tasks, prompt engineering alone may not 

yield the required results. In such cases model fine-tuning may be needed.

Fine-tuning is the process of adapting a pre-trained large language 

model to a specific task or domain, capitalizing on the general knowledge 

the model has acquired and tailoring it to be more effective for specialized 

applications.

LLMs are initially pre-trained on a vast and diverse text corpora. 

During this phase, the model learns language structures, grammar, 

facts, reasoning abilities, and even some biases present in the data. This 

general training yields a model that’s knowledgeable but not necessarily 

specialized in any particular task.
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After pre-training, the model can be further trained (or “fine-tuned”) 

on a smaller, narrower, task-specific dataset. This dataset is typically 

labeled and relates to a specific application, such as sentiment analysis, 

question answering, or medical text classification.

This provides several benefits:

• Specialization: While the pre-trained model is a jack- 

of- all-trades, fine-tuning tailors it to be an expert in a 

particular domain or task.

• Transfer learning: Fine-tuning leverages the general 

knowledge gained during pre-training, allowing the 

model to achieve strong performance on specific tasks 

even with a smaller amount of task-specific data.

• Efficiency: Training a model from scratch on a 

specific task might require a vast amount of data and 

computational resources. Fine-tuning a pre-trained 

model can achieve competitive, if not superior, results 

with less data and in less time.

For fine-tuning, you need a labeled dataset corresponding to your 

specific task. For instance, if you’re fine-tuning for sentiment analysis, 

you’d need a dataset of sentences/paragraphs labeled as positive, negative, 

or neutral.

Instead of initializing the model with random weights (as you would 

when training from scratch), you start with the weights from the pre-

trained model. You then update these weights using your task- specific data.

A crucial aspect of fine-tuning is selecting an appropriate learning rate. 

Often, a smaller learning rate is chosen compared to pre-training because 

you want to make smaller adjustments to the already learned weights, 

rather than significant changes.

However, when attempting to fine-tune an LLM, several key aspects 

needs to be considered.
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 Overfitting
Given that LLMs have a massive number of parameters, they can easily 

overfit to a small fine-tuning dataset. Regularization techniques, early 

stopping, or even using a smaller version of the pre-trained model can 

help mitigate this.

 Catastrophic Forgetting
If fine-tuned too aggressively, the model might “forget” some of the 

general knowledge it acquired during pre-training. A balanced approach 

is necessary to retain the general knowledge while adapting to the 

specific task.

 Evaluation
Always evaluate the fine-tuned model on a separate validation or test set to 

gauge its performance on the specific task.

Fine-tuning is a powerful mechanism in the transfer learning paradigm 

that allows developers to harness the might of LLMs for a wide range 

of tasks without the need for vast amounts of labeled data or extensive 

training times.

 Summary
In this chapter, we discussed what factors make a transformer model into 

a large language model and how factors such as parameter count and the 

scale of data affect their capabilities. We talked about how LLMs can be 

categorized using different perspectives such as their architecture, training 

objectives, and applications. We looked at the concept of foundation 
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models, and how LLMs possess those characteristics. Finally, we looked 

at how prompt engineering and fine-tuning can be used to adapt LLMs to 

specific tasks more effectively.

In the next chapter, we will look at several of the popular LLMs, their 

architectures, and capabilities.
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CHAPTER 5

Popular LLMs
Over the past couple of chapters, we have discussed the history of NLP, its 

concepts, and how it evolved over time. We learned about the transformer 

architecture and how it revolutionized how we look at language models 

and paved the way for LLMs.

Now, with that understanding, we should look at some of the most 

influential LLMs in recent years.

Although the field has been around for only a couple of years, the 

number of innovations in the LLM space has been massive. With new 

and improved models being released frequently and some models being 

proprietary in nature, it is not easy to talk about every variation. But here, 

we have made a list of some of the most impactful models and their details 

that are publicly available.

 Generative Pre-trained Transformer
Generative Pre-trained Transformer (GPT) is the model that popularized 

LLMs to the general public. GPT is a family of LLMs released by OpenAI, 

an American artificial intelligence research laboratory consisting of the 

nonprofit OpenAI Inc. and its for-profit subsidiary, OpenAI LP. The GPT 

models are a collection of foundation models based on the transformer 

architecture that have been sequentially numbered, referred to as 

the “GPT-n” series, with GPT-1 being the first and GPT-4 being the 

most recent.

© Thimira Amaratunga 2023 
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In 2018, OpenAI published an article titled “Improving Language 

Understanding by Generative Pre-Training.” In this article, they 

introduced the first GPT system, which later became known as GPT-1. The 

introduction of the transformer model in 2017 marked the beginning of 

pre-trained transformer models, which are generative.

As we learned in the earlier chapters, prior to the introduction of the 

transformer model, neural NLP models primarily employed supervised 

learning from large amounts of manually labeled data. This reliance 

on supervised learning limited their use of datasets that were not well- 

annotated. In addition, the limited parallelization of those models 

made training extremely large models prohibitively expensive and time- 

consuming. Therefore, some languages, such as Swahili or Haitian Creole, 

were deemed near impossible to model using those methods because of a 

lack of available text for corpus-building.

To overcome these limitations, OpenAI’s GPT model used a semi- 

supervised approach, which was the first time such an approach was used 

with transformer models. The approach involved two stages:

 1. An unsupervised generative pre-training stage in 

which a language modeling objective was used to 

set initial parameters

 2. A supervised discriminative “fine-tuning” stage 

in which these parameters were adapted to a 

target task

The first GPT architecture (GPT-1) used a 12-layer decoder-only 

transformer, using 12 masked self-attention heads, with 64-dimensional 

states each (for a total of 768), followed by linear-softmax. For the position- 

wise feed-forward networks, 3,072-dimensional inner states were used. 

Figure 5-1 shows the architecture of GPT-1.
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Figure 5-1. The architecture of GPT-1. Source: “Improving Language 
Understanding by Generative Pre-Training,” OpenAI

The model used the Adam optimization algorithm rather than the 

more commonly used stochastic gradient descent (SGD). The learning rate 

was increased linearly from zero over the first 2,000 updates to a maximum 

of 2.5×10−4, and annealed to 0 using a cosine schedule. The model used 

mini-batches of 64 randomly sampled, contiguous sequences of 512 
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tokens and was trained for 100 epochs. The model used bytepair encoding 

vocabulary with 40,000 merges and residual, embedding, and attention 

dropouts with a rate of 0.1 for regularization, also employing a modified 

version of L2 regularization with w = 0.01 on all nonbias or gain weights. 

Gaussian Error Linear Unit (GELU) was used as the activation function.

Hyperparameter settings from the unsupervised pre-training stage 

were reused for the most part in the fine-tuning stage. A 0.1 dropout 

rate has been added to the classifier, and a learning rate of 6.25e-5 and a 

batchsize of 32 has been used. The model used a linear learning rate decay 

schedule with warmup over 0.2 percent of training and a λ value of 0.5. 

OpenAI has noted that GPT-1 can sufficiently adapt to most tasks with just 

three epochs of fine-tuning.

GPT-1 was trained on BookCorpus, a dataset consisting of the text of 

around 11,000 unpublished books scraped from the Internet. BookCorpus 

(also known as the Toronto Book Corpus) was introduced in a 2015 paper 

by researchers from the University of Toronto and MIT titled “Aligning 

Books and Movies: Towards Story-like Visual Explanations by Watching 

Movies and Reading Books” as a dataset consisting of free books written by 

yet unpublished authors. The dataset consists of around 985 million words, 

and the books that comprise it span a range of genres, such as science 

fiction, romance, and fantasy. GPT-1 used a subset of the BookCorpus 

dataset, which was around 7,000 books and was chosen to contain the 

long passages of continuous text that helped the model learn to handle 

long-range dependencies. The raw text of the dataset was cleaned using 

the FTFY library (a heuristic-based Python library designed by Robyn 

Speer at Luminoso that is used for fixing broken Unicode text), followed 

by standardization of whitespace and punctuation. The tokenization 

was done using the spaCy library, an open-source library for Python and 

Cython for part-of-speech tagging, named entity recognition (NER), text 

categorization, and dependency parsing, which uses convolutional neural 

network models.
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GPT-2, the successor of GPT-1, was partially released in February 2019, 

which was followed by the release of the full 1.5-billion-parameter model 

in November 2019. The reason for the controlled release was concerns 

about potential misuse, including generating fake news or malicious 

content due to the capabilities displayed by the model. One of GPT-2’s 

main strengths is its ability to generate coherent and contextually relevant 

text. Given a prompt or partial sentence, GPT-2 can generate complete, 

realistic, and contextually appropriate text.

For the training of GPT-2, the CommonCrawl corpus was initially 

considered because of its large size. CommonCrawl is a large text corpus 

created using web crawling and was commonly used in training NLP 

systems. However, it was later rejected as a training dataset as data quality 

issues and unintelligible content were found during the initial reviews of 

GPT-2 training. Instead, OpenAI created a new corpus, known as WebText, 

specifically for training GPT models. Unlike CommonCrawl, WebText was 

generated by scraping only pages linked to Reddit posts, with the condition 

that the post has received at least three upvotes prior to December 2017, 

as opposed to scraping content indiscriminately from the web, which 

was done in previous datasets such as CommonCrawl. The scraped data 

of WebText was then cleaned, HTML documents were parsed into plain 

text, duplicate pages were eliminated, and Wikipedia pages were removed 

from the dataset since their presence in many other datasets could have 

induced overfitting.

OpenAI first announced GPT-2 in February 2019. However, OpenAI 

refused to publicly release the GPT -2’s source code initially in contrast 

to GPT-1, which was made available immediately upon announcement. 

OpenAI cited that the reluctance was due to the risk of malicious use. 

Initial concerns on GPT-2 were its potential ability to generate text that can 

be considered obscene or racist or that spammers can use the generated 

text to exploit and evade automated filters since the generated text was 

usually completely novel.

Chapter 5  popular llMs



124

Because of these concerns, OpenAI opted not to release the fully 

trained model for GPT-2 nor detail the corpora it was trained on with the 

February 2019 announcement. However, researchers were able to replicate 

GPT-2 using the descriptions of OpenAI’s methods in prior publications 

and the free availability of the underlying code of earlier models. 

OpenGPT-2 was one such replication. It was released in August 2019. 

Along with it, a freely licensed version of WebText called OpenWebText was 

also released. OpenAI released a partial version of GPT-2 in August 2019. 

This version had 774 million parameters, which was roughly half the size of 

the full model, which had 1.5 billion parameters.

By November 2019, OpenAI stated that they had not seen strong 

evidence of misuse so far, and the full 1.5 billion parameter model was 

released in November 2019.

In May 2020, OpenAI announced GPT-3. While architecturally 

similar to earlier GPT models, it has higher accuracy. This is attributed 

to its increased capacity and greater number of parameters. It uses a 

2,048-tokens-long context and then-unprecedented size of 175 billion 

parameters, requiring 800GB to store. The model demonstrated strong 

zero-shot and few-shot learning on many tasks.

GPT-3 was trained on the following data:

• 60 percent of the data was from a filtered version of 

Common Crawl consisting of 410 billion byte-pair- 

encoded tokens

• 22 percent of the data was from WebText2, consisting of 

19 billion tokens

• 8 percent of the data was from 12 billion tokens of the 

Books1 dataset

• 8 percent of the data was from 55 billion tokens from 

the Books2 dataset

• 2 percent of the data was from 3 billion tokens from 

Wikipedia
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Note openaI has not disclosed the origin or the contents of Books1 
or Books2 at the time of this writing.

The capabilities of GPT-3 directly lead to the concept of prompt 

engineering.

With the success of the GPT-3 model, OpenAI has released a family of 

GPT-3 models that can be utilized for different purposes.

Model Name # of Parameters

Gpt-3 small 125 million

Gpt-3 Medium – “ada” 350 million

Gpt-3 large 760 million

Gpt-3 Xl – “Babbage” 1.3 billion

Gpt-3 2.7B 2.7 billion

Gpt-3 6.7B – “Curie” 6.7 billion

Gpt-3 13B 13 billion

Gpt-3 175B – “DaVinci” 175 billion

In March 2022, OpenAI made available new versions of GPT-3 and 

OpenAI Codex in its API with edit and insert capabilities under the names 

“text-davinci-002” and “code-davinci-002.”

Codex is a variation of the GPT-3 model, fine-tuned for use in 

programming applications, which gives the ability to parse natural 

language and generate code in response. In March 2023, concerns raised 

by the software community caused OpenAI to shut down access to 

Codex. The main concerns were whether the code snippets generated by 

Codex could violate copyright (in particular, the GPL condition requiring 

derivative works to be licensed under equivalent terms) and whether 
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training on public repositories falls into fair use. The Codex model is now 

available to be used only by researchers of the OpenAI Research Access 

Program.

In November 2022, OpenAI began referring to the text-davinci 

and code-davinci models as belonging to the “GPT-3.5” series. At 

the same time, they released ChatGPT, a GPT-3.5 model fine-tuned 

for conversations. ChatGPT was notable for allowing users to steer 

the conversations to generate the desired content by considering the 

succeeding prompts and replies as context.

In April 2023, OpenAI introduced a new variant of its GPT-3.5 

series model, known as “GPT-3.5 with Browsing,” building upon the 

capabilities of its predecessors text-davinci-002 and code-davinci-002, and 

incorporating the ability to access and browse online information leading 

to more accurate and up-to-date responses to user queries. The GPT-3.5 

with Browsing model was made available to the public in April 2023.

GPT-3 marked the transition of the GPT-n family from open source to 

proprietary models. In September 2020, Microsoft announced that it had 

licensed exclusive use of GPT-3. While others can still use the public API 

to receive output, only Microsoft will have access to GPT-3’s underlying 

model. The architecture details and the training dataset used remain 

undisclosed.

OpenAI released GPT-4 in March 2023. OpenAI has demonstrated 

video and image inputs for GPT-4. However, these features remain 

inaccessible to the general public at this time. OpenAI offers the ChatGPT 

Plus subscription service, which gives access to a ChatGPT version 

powered by GPT-4. Microsoft Bing Chat also uses GPT-4. So far, OpenAI 

has declined to reveal any technical information about GPT-4, such as 

the size of the model. Experts have, however, speculated that GPT-4 has 

around 1.8 trillion parameters across 120 layers and has been trained on 13 

trillion tokens.
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GPT models have had a massive impact on the NLP field by 

popularizing LLMs and their capabilities and triggering the creation of 

competitor models, which keep pushing the boundaries of AI.

 Bidirectional Encoder Representations 
from Transformers
Bidirectional Encoder Representations from Transformers (BERT) was 

introduced in 2018 by researchers at Google Jacob Devlin et al. in their 

paper titled “BERT: Pre-training of Deep Bidirectional Transformers 

for Language Understanding.” Within a short time, BERT became the 

baseline for state-of-the-art NLP experimentations, with more than 150 

publications citing the model and its improvements.

BERT is an encoder-only transformer model. BERT’s innovation 

lies in its ability to capture context from both forward and backward 

directions in a sequence, enabling it to create highly contextualized word 

representations. Unlike earlier traditional language models that were 

unidirectional (predicting the next word given previous words), BERT 

predicts missing words in a sentence by considering both the left and right 

context, allowing it to capture contextual nuances more effectively.

BERT has used the masked language model training objective for its 

pre-training. During training, random words in sentences are masked, 

and the model learns to predict these masked words based on the 

surrounding context. Its bidirectional nature enables it to predict masked 

words effectively. BERT’s input representation involves tokenizing text 

into subword units (WordPieces) using the WordPiece tokenizer. This 

technique helps with handling out-of-vocabulary words and breaking 

down complex words. BERT introduces segment embeddings to 

distinguish between different sentences in a document or context. These 

segment embeddings are especially useful for tasks where the model needs 

an understanding of the relationships between sentences, such as question 
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answering. BERT’s output embeddings are contextualized, meaning they 

capture each word’s context concerning the entire sentence. This context 

awareness contributes to its strong performance in understanding nuances 

and relationships within the text.

The original English language implementation of the BERT model had 

two sizes:

• BERTBASE: 12 encoders, 12 bidirectional self-attention 

heads, 110 million parameters in total

• BERTLARGE: 4 encoders, 16 bidirectional self-attention 

heads, 340 million parameters in total

The BASE and LARGE models were pre-trained on the Toronto 

BookCorpus (800M words) and English Wikipedia (2,500M words).

In October 2019, Google announced that they had started applying 

BERT models for English language search queries within the United States. 

In December 2019, it was reported that Google Search had adopted BERT 

for more than 70 languages. By October 2020, almost every single English- 

based query was processed by a BERT model.

 Pathways Language Model
The Pathways Language Model (PaLM) is a transformer-based large 

language model developed by Google. The model was first announced 

in April 2022 and remained private until March 2023. At the time of this 

writing, the PaLM API was made available for developers through a 

waitlist, and Google stated that it would be made publicly available later.

The main implementation of PaLM has 540 billion parameters. The 

researchers have also built two smaller versions of the PaLM model 

with 8 and 62 billion parameters for different tasks. The PaLM model 

has demonstrated its capabilities in a wide range of tasks, such as 

commonsense reasoning, mathematical reasoning, joke explanation, 
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code generation, and language translation. When combined with chain- 

of- thought prompting (a prompt engineering technique that allows large 

language models to solve a problem as a series of intermediate steps 

before giving a final answer), PaLM has achieved significantly better 

performance on datasets requiring multistep reasoning, such as word 

problems and logic-based questions.

In January 2023, Google developed an extended version of the PaLM 

540B model called Med-PaLM, which was fine-tuned on medical data 

and outperformed previous models on medical question-answering 

benchmarks. Med-PaLM became the first AI model to obtain a passing 

score on U.S. medical licensing questions. It not only was able to answer 

both multiple-choice and open-ended questions accurately but also 

provided reasoning and was able to evaluate its own responses.

Google then further extended PaLM using a vision transformer to 

create PaLM-E, a state-of-the-art vision-language model that can be used 

for robotic manipulation.

In May 2023, Google announced PaLM 2, which is reported to be a 340 

billion parameter model trained on 3.6 trillion tokens.

In June 2023, Google announced AudioPaLM for speech-to-speech 

translation, which uses the PaLM-2 architecture and initialization.

 Large Language Model Meta AI
Large Language Model Meta AI (LLaMA) is a family of large language 

models developed by Meta AI (an artificial intelligence laboratory 

belonging to Meta Platforms Inc., formerly known as Facebook, Inc.) 

starting in February 2023.

The first version of LLaMA had four model sizes trained on 7, 13, 33, 

and 65 billion parameters, respectively. LLaMA’s developers reported that 

the 13 billion parameter model’s performance on most NLP benchmarks 

exceeded that of the much larger GPT-3, which has 175 billion parameters.
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In July 2023, in partnership with Microsoft, Meta announced Llama 2.  

Llama 2 had three model sizes with 7, 13, and 70 billion parameters, 

respectively. The model architecture remains largely unchanged from 

Llama 1 models, but 40 percent more data was used for training.

Compared to GPT-3, LLaMA has these key differences:

• LLaMA uses the SwiGLU activation function instead 

of ReLU.

• LLaMA uses rotary positional embeddings instead of 

absolute positional embedding.

• LLaMA uses root-mean-squared layer-normalization 

instead of standard layer-normalization.

• LLaMA increases context length from 2048 (in Llama 1) 

tokens to 4096 (in Llama 2) tokens between.

Meta has released the LLaMA’s model weights to the research 

community under a noncommercial license, unlike many other LLMs, 

which remain proprietary.

 Summary
What we discussed in this chapter is only a portion (although some 

of the most impactful tools) of the LLM landscape. Because some of 

these models are proprietary, as well as being extremely new, details of 

their inner workings are scarce. We may get to learn more as time goes 

on. For the time being, the best way to learn about their capabilities is 

to experiment with them. AI model repositories such as HuggingFace 

(https://huggingface.co) contains either official or open-source 

recreations of the models we discussed with instructions to get you started.

As a rapidly developing area, new architectures, improvements, and 

achievements in the LLM field happens daily. We may yet to see the full 

capabilities of LLMs.
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CHAPTER 6

Threats, 
Opportunities, and  
Misconceptions
The release of ChatGPT was a significant milestone in AI, not just because 

of its groundbreaking capabilities and its pushing of the boundaries of 

technology but also because of the unprecedented interest it generated 

in the general public. While AI technology components have been part 

of day-to-day technology for decades, this level of enthusiasm from the 

general public was previously unheard of.

It was not only the technology enthusiasts or the research community 

alone. The interest was from people from many other technical and 

nontechnical fields as well as from media outlets. This popularity, together 

with the fact that the capabilities of ChatGPT were open to the general 

public to use, helped it become the fastest-growing consumer software 

application in history, which in turn directly led to the widespread 

recognition of large language models (LLMs) and an explosion of 

competing models from different vendors.

This widespread enthusiasm, as well as the media hype around them, 

has caused some misunderstandings and misinterpretations of LLMs and 

their capabilities. This has led to some concern, and in some cases fear, 

toward LLMs and AI technology in general.
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There are some aspects regarding LLMs that pose legitimate concerns 

and need to be addressed as the technology progresses and gets applied. 

However, from the conversations happening about LLMs, it is clear that 

some of the concerns gaining traction are misplaced.

In this book, we have gone through the history, reasoning, techniques, 

and various implementations of LLMs. So, with our understanding of 

how large language models work, let’s look into some of the concerns, 

misconceptions, and opportunities surrounding LLMs.

 LLMs and the Threat of a Superintelligent AI
The capabilities of ChatGPT and its counterparts have mesmerized people. 

Its ability to have human-like conversations and the demonstration of 

knowledge from a vast set of distinct domains has people considering it 

to have superhuman abilities. While many have praised these capabilities 

and are enthusiastic to utilize them, it has brought up a deep-rooted fear: 

the existential threat from a superintelligent AI.

To understand this better, we must look at the levels of AI.

 Levels of AI
The goal of AI research, as we learned in the first chapter, is to build 

machines that have intelligent behavior. The levels of AI refer to different 

stages or capabilities of artificial intelligence in that journey. These can 

depend on everything from simple, rule-based algorithms to hypothetical 

machines that might one day surpass human intelligence in all areas. 

These levels are defined to help clarify discussions around AI’s capabilities 

and potential future developments and theoretical capabilities.

The main levels of AI are as follows.
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Narrow or weak AI
These are AI systems designed and trained for a specific task. 

They operate based on a predefined set of rules or models trained on 

specific data.

Characteristics:

• Task-specific: Performs well on one task but lacks 

versatility

• No consciousness: Operates without understanding, 

emotions, or self-awareness

• Needs input: Relies on human-defined parameters

• Examples: Image recognition software, chatbots 

tailored to specific services, and algorithms that 

recommend videos or songs based on user behavior

Artificial general intelligence (AGI)
AI that has the capability to understand, learn, and perform any 

intellectual task that a human can, possessing similar cognitive abilities to 

a human.

Characteristics:

• Versatility: Can learn and excel in multiple tasks, not 

just the ones it was specifically trained for.

• Learning and adaptation: Can learn new tasks without 

being explicitly programmed for them.

• Conceptual understanding: Can understand abstract 

concepts, reason through problems, and make 

decisions in unfamiliar situations.

• Examples: A theoretical concept that doesn’t yet exist; 

often depicted in science fiction
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Artificial superintelligence (ASI)
This is AI that surpasses human intelligence, not just in specific tasks, 

but in virtually every field, including creativity, general wisdom, problem- 

solving, and social intelligence.

Characteristics:

• Superiority: Surpasses the best human brains in 

virtually every field

• Autonomous decision-making: Can make decisions and 

set its own objectives

• Self-improvement: Has the potential for recursive self- 

improvement, where it can improve its algorithms and 

structures autonomously

• Examples: Theoretical and doesn’t exist yet; often 

the subject of speculative fiction and philosophical 

discussions, as its realization could lead to profound 

societal changes

When we are talking about AGI or ASI, there are few things we need to 

consider.

• Progression: It’s essential to note that the progression 

from weak AI to AGI and then ASI isn’t just about 

scaling up. Similar to how NLP moved from RNNs to 

transformers, this involves foundational advancements 

in AI algorithms, understanding, and architecture.

• Timeframe: Predictions about when (or if ) we might 

achieve AGI or ASI vary widely among experts. Some 

believe it’s just a few decades away, while others think 

it might take much longer or may never occur at all.
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• Ethical and safety concerns: As we move toward more 

advanced forms of AI, ethical and safety concerns 

intensify. Ensuring that advanced AI aligns with human 

values can be controlled and is used ethically becomes 

paramount.

Understanding these levels is important as discussions about AI’s 

societal impact, ethical considerations, and potential become more 

prevalent. Each level presents its challenges, benefits, and implications.

The emergence of an ASI could bring some unprecedented benefits.

• Solving complex problems: Issues like climate change, 

disease, or even theoretical physics problems could be 

tackled efficiently.

• Technological advancements: Rapid innovation could 

occur in fields such as space exploration, medicine, 

energy, and more.

• Enhanced human abilities: Through brain-computer 

interfaces, humans might merge with AI to some 

extent, enhancing our cognitive abilities.

However, alongside these potential benefits, there are some concerns 

about existential risks.

 Existential Risk from an ASI
An existential risk is one that threatens the extinction of intelligent life or 

the permanent and drastic reduction of its potential.
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These are some of the main existential concerns related to ASI:

• Loss of control: Once an ASI system surpasses human 

intelligence across the board, controlling or predicting 

its actions becomes challenging. If it’s capable of 

recursive self-improvement, it might quickly evolve in 

ways we can’t foresee or comprehend.

• Misalignment of values: Ensuring that an ASI’s goals 

align with human values is a significant challenge. A 

small misalignment might lead the ASI to take actions 

that are technically in line with its programmed goals 

but detrimental to humans.

• Resource competition: ASI might see resources that 

humans rely on as useful for its own goals, leading to 

competition and potential conflict.

• Weaponization: ASI could be used in warfare or by 

malicious actors, leading to unparalleled destructive 

capabilities.

• Dependency and de-skilling: Over-reliance on ASI could 

lead to humanity losing essential skills or becoming 

overly dependent on the technology.

• Ethical and moral concerns: Decisions made by ASI, 

especially those affecting human lives, might not align 

with our moral and ethical frameworks.

• Economic disruption: ASI could render many jobs 

obsolete, leading to economic and social upheavals.

• Existential unease: The mere existence of an entity that 

surpasses human capabilities in every domain might 

lead to existential unease or a reevaluation of human 

purpose and identity.
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Apart from these concerns, there are the ethical considerations of the 

AI itself: if an AI achieves a superintelligent state, questions about its rights 

and the ethical considerations of its treatment arise. Should it be granted 

personhood? Would “turning it off” be considered an ethical violation?

Addressing this problem before achieving ASI is crucial because, 

post-development, we might not get a second chance to make corrections. 

This requires rigorous research in AI alignment, safety protocols, and 

ethical guidelines. Some AI researchers advocate for an international 

collaboration to ensure that the race to develop ASI prioritizes safety over 

speed. The aim is to ensure that if and when ASI is realized, it benefits all of 

humanity and doesn’t harm or jeopardize our existence.

 Where LLMs Fit
Because of the demonstrated abilities of current LLMs, many are assuming 

them to be ASIs and in turn concerned of the associated existential threats 

we discussed earlier.

However, this concern is misplaced as LLMs in their current form 

are not at the capability of ASIs. While they represent a significant 

advancement in machine learning and natural language processing, they 

are not examples of artificial superintelligence.

In fact, current LLMs are not even at the AGI level.

For an AI model to reach the AGI level, it needs to be able to 

understand, learn, and perform any intellectual task that a human can. 

This means that an AI needs to be able to at least match human cognitive 

abilities in every area to be considered an AGI. To be considered an ASI, it 

needs to excel in abilities in every cognitive area.

Current LLMs are good language models and great for text generation 

and comprehension. But they do not have capabilities beyond that.

However, they can be viewed as steppingstones on the path toward 

more advanced AI capabilities.
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Here are some of the ways LLMs are helping the AI field as a whole to 

move forward:

• Demonstration of scalability: LLMs show that as we 

increase model size, data, and compute resources, 

performance on a variety of tasks tends to improve. 

This suggests that, to some extent, scaling up current 

techniques might be a viable path to more capable 

AI systems, though it’s uncertain if it will lead 

directly to ASI.

• Transfer learning and generalization: LLMs are trained 

on diverse datasets and can perform a range of tasks 

without task-specific training, showcasing the potential 

of transfer learning. The ability to generalize across 

tasks is a crucial aspect of AGI and, by extension, ASI.

• Foundational for more complex systems: While 

LLMs are primarily designed for text generation 

and comprehension, components based on similar 

architectures could be integrated into more complex AI 

systems that have multimodal capabilities (handling text, 

image, video, etc.) or more advanced reasoning abilities.

• Ethical and safety precedents: LLMs provide a testing 

ground for ethical and safety concerns related to 

AI. Issues like bias in AI outputs, the potential for 

misuse, and the challenges in specifying desired 

behavior are all apparent even at the LLM level. 

Addressing these challenges now helps in preparing for 

more advanced AI systems.

• Human-AI interaction: LLMs offer insights into human- 

AI collaboration. By using LLMs, we can learn more 

about how humans and advanced AI systems might 

coexist, collaborate, and communicate in the future.
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It’s crucial to differentiate between the capabilities of current LLMs 

and the theoretical capabilities of ASI. LLMs, no matter how large, don’t 

possess consciousness, self-awareness, or general intelligence that 

surpasses human capabilities across all fields. They operate based on 

patterns in the data they were trained on and lack true understanding or 

reasoning.

The limitations and failures of LLMs can inform AI researchers about 

the gaps between current technologies and the desired features of AGI or 

ASI. For instance, LLMs’ occasional nonsensical outputs, susceptibility 

to adversarial inputs, or inability to reason deeply about complex topics 

highlight areas that need significant advancements.

In summary, while LLMs are not close to ASI, they play a role in the 

AI research landscape, offering insights, raising important questions, and 

pushing the boundaries of what machine learning models can achieve. 

They can be viewed as a piece of the puzzle, helping the AI community 

understand certain aspects of the journey toward more advanced AI forms.

 Misconceptions and Misuse
While we may not need to be concerned about AI taking over the world 

yet, there are some misconceptions regarding LLMs that may cause either 

intentional or unintentional misuse.

The following are some of the widely held misconceptions and 

misunderstandings about LLMs.

LLMs understand content.

• Misconception: LLMs understand the text they generate 

in the same way humans do.

• Reality: LLMs don’t “understand” content. They 

generate text based on patterns in the training data but 

lack a deep or conscious understanding of the concepts 

they discuss.
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LLMs are conscious or self-aware.

• Misconception: Due to their advanced capabilities, 

LLMs possess consciousness or self-awareness.

• Reality: LLMs are not conscious entities. They process 

information and generate outputs without awareness, 

emotions, or intent.

LLMs always produce correct information.

• Misconception: Outputs from LLMs are always accurate 

and trustworthy.

• Reality: LLMs can produce incorrect, misleading, or 

biased information, depending on the prompt and the 

patterns in their training data.

LLMs are knowledge models.

• Misconception: LLMs have knowledge on a vast 

number of fields; therefore, we can use them as 

knowledge models.

• Reality: LLMs are only as good as their training 

data, and only able to learn linguistic relationships 

from them

Bigger is always better.

• Misconception: Increasing the size of a model will 

always lead to better and more accurate results.

• Reality: While larger models often exhibit better 

generalization, there are diminishing returns, and other 

challenges such as increased computational costs and 

potential overfitting can arise.
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LLMs can invent novel, advanced knowledge.

• Misconception: LLMs can create or discover new 

knowledge, theories, or facts.

• Reality: LLMs generate text based on their training data. 

They can’t invent genuinely novel scientific theories or 

facts beyond the scope of their training.

LLMs are free from bias.

• Misconception: LLMs provide objective and unbiased 

information.

• Reality: Since LLMs are trained on vast amounts of 

Internet text, they can and do inherit biases present in 

that data.

LLMs can replace all human jobs.

• Misconception: Because of their text generation 

capabilities, LLMs will replace all jobs related to 

writing, customer service, etc.

• Reality: While LLMs can automate some tasks, many 

jobs require human judgment, creativity, empathy, and 

context-awareness that LLMs currently lack.

LLMs responses are deliberate or endorsed by their creators.

• Misconception: If an LLM generates a particular 

statement, it reflects the beliefs or intentions of its 

creators or trainers.

• Reality: LLMs generate outputs based on training 

data patterns, without intent. An output doesn’t imply 

endorsement by the model’s creators.
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All LLMs are alike.

• Misconception: All large language models, irrespective 

of their architecture or training data, behave similarly.

• Reality: Different models, training processes, and fine- 

tuning can result in varied behavior and capabilities.

Understanding these misconceptions is crucial, especially as LLMs 

become more integrated into products, services, and decision-making 

processes. Proper education and communication about what LLMs can 

and cannot do are essential to harness their potential responsibly.

Researchers have also found that LLMs can suffer from a situation 

called hallucinations. These refer to instances where the model generates 

information that isn’t accurate, grounded in reality, or present in its 

training data. Essentially, the model “makes things up” or provides outputs 

that might seem plausible but aren’t factual or real.

There can be many reasons for hallucinations.

• Generalization from training data: LLMs generalize 

from their vast training data to answer queries or 

generate text. While this generalization is often useful, 

it can sometimes lead the model to create outputs that 

are not strictly accurate.

• Lack of ground truth: Unlike some other AI models that 

have a clear “ground truth” or correct answer (e.g., an 

image classifier labeling a picture of a cat), LLMs work 

in domains where the truth can be more nebulous. This 

makes it challenging to always generate the “correct” 

response, especially when the prompt is ambiguous.

• Bias and incorrect information in training data: If the 

model’s training data contains misinformation, biases, 

or outdated information, the model might reproduce or 

even amplify these inaccuracies in its outputs.
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• Overfitting or memorization: While LLMs like GPT-3 

are designed to generalize rather than memorize, 

there’s always a risk that a model might “remember” 

and reproduce specific patterns, phrases, or pieces of 

information from its training data, even if they aren’t 

accurate or relevant to the prompt.

• User prompt influence: The way a user crafts a prompt 

can significantly influence the model’s output. 

Ambiguous or leading prompts can increase the 

likelihood of hallucinated responses.

• No external fact-checking mechanism: LLMs generate 

responses based on patterns in their training data and 

don’t have the capability to fact-check against external 

or up-to-date sources in real time.

To address hallucinations, researchers and developers use techniques 

like fine-tuning on more specific datasets, adding human-in-the-loop 

review processes, or building external verification systems to cross-check 

outputs.

Users should always approach outputs from LLMs with a critical 

mindset, especially when using them for tasks that require high accuracy 

or have significant real-world implications.

LLMs provide a vast range of positive applications because of their text 

generation capabilities, but their power also opens the door to potential 

intentional misuse as well. The following are some of the areas that misuse 

can happen:

• Disinformation and fake news: LLMs can generate 

believable but entirely fictitious news articles or 

stories. These can be used to spread false information, 

manipulate public opinion, or create political 

instability.
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• Impersonation: With enough data about a person’s 

writing style, an LLM could be used to generate 

messages or emails that mimic that individual, leading 

to potential fraud or misinformation.

• Automated spam and phishing: LLMs can craft highly 

personalized and convincing spam emails, increasing 

the likelihood of people falling for phishing schemes.

• Toxic and harmful content: If not properly controlled, 

LLMs can produce or amplify harmful, biased, or 

offensive content.

• Cheating in education contexts: Students could use 

LLMs to automatically generate essays, project reports, 

or answers to questions, undermining educational 

integrity.

• Unfair competition in content creation: LLMs can be 

used to mass-produce articles, blog posts, or other 

written content, potentially flooding platforms with 

low-cost, generic content and squeezing out human 

creators.

• Deepfakes: While deepfakes primarily involve 

manipulating videos, the scripts or dialogues for these 

videos could be generated by LLMs to make them 

sound more convincing.

• Stock market manipulation: By generating fake news 

or rumors about companies, LLMs could be used to 

manipulate stock prices for financial gain.

• Unwanted data extraction: Users could craftily question 

LLMs to retrieve specific information from their 

training data, potentially leading to privacy concerns.
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• Manipulation in social engineering attacks: Attackers 

could use LLMs to craft persuasive messages or 

narratives that trick individuals into revealing personal 

information or taking actions against their best 

interests.

• Intensifying echo chambers: By providing content that 

aligns with users’ existing beliefs (based on input data), 

LLMs could further entrench individuals in their echo 

chambers, exacerbating polarization.

Recognizing these potential misuses is the first step in creating 

safeguards. Developers and platforms using LLMs should be aware of 

these risks and employ measures to prevent them, such as fine-tuning 

models for safety, adding layers of human review, or setting guidelines for 

responsible usage.

 Opportunities
Large language models have introduced a myriad of opportunities across 

various domains because of their advanced text generation capabilities. 

Here are some handful of examples from a wide array of possibilities.

Content creation assistance

• LLMs can help writers generate ideas, structure 

content, or even write drafts. And they can assist in 

poetry, storytelling, scriptwriting, and other forms 

of creative expression to supplement human created 

content rather than to replace them.
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Education

• Tutoring: LLMs can offer personalized explanations on 

a range of topics, helping students understand complex 

concepts.

• Language learning: They can assist language learners 

by offering translations, explanations, or conversational 

practice.

Research and information gathering

• LLMs can summarize large amounts of text, generate 

literature reviews, or help researchers explore various 

perspectives on a topic.

Business applications

• Customer support: The can automate responses to 

frequently asked questions or guiding users through 

troubleshooting.

• Drafting emails: The can assist professionals in crafting 

well-structured and articulated emails or reports.

Programming and development

• Code generation: Given a human-readable prompt, 

LLMs can generate code snippets or even assist in 

debugging.

Gaming

• LLMs can be used to generate dialogue for characters, 

create dynamic storylines, or even craft entire in-game 

worlds based on textual descriptions.
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Entertainment

• They can create dialogue for movies, generate plot 

ideas, or assist in scriptwriting.

Human-computer interaction

• With LLMs, the interaction between users and software 

can become more natural, with the software better 

understanding and generating human-like text.

Accessibility

• LLMs can be used to develop advanced chatbots 

for individuals who may need companionship or 

support, or they can translate complex text into simpler 

language for individuals with different cognitive needs.

Cultural preservation

• LLMs trained on diverse datasets can help in 

preserving and sharing knowledge about various 

cultures, languages, and traditions that might be less 

represented online.

Idea generation and brainstorming

• They can assist teams in coming up with creative 

solutions, product names, or marketing strategies.

Mental health and well-being

• While not a replacement for professional therapy, LLMs 

can be used as interactive journaling tools, offering 

responses or reflections based on user input.

While these opportunities are exciting, it’s crucial to use LLMs 

responsibly. Ensuring the generated content aligns with human values 

is factually accurate (where necessary) and doesn’t unintentionally 
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propagate biases or misinformation is essential. Moreover, in areas such as 

mental health, LLMs should be used with caution, always underlining the 

importance of human expertise and intervention.

 Summary
As with the introduction of any new technology, LLMs have given rise to 

a set of concerns and perceived threats. Most of these concerns are due 

to not understanding what LLMs truly are. However, there are genuine 

concerns as well. The capabilities of LLMs can be misused—either 

intentionally or not—that may have negative impacts in our day-to-day 

lives. As LLMs technologies become more common, it is important to 

understand these risks and add safeguards to prevent them.

As we are still at the beginning of the LLM era, we may see new 

opportunities, approaches, and entire industries emerge around them in 

the near future.

Large language models are a milestone in artificial intelligence 

and human ingenuity. It is our responsibility to use them correctly and 

rationally to ensure progress and a bright future for all.
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