
Understanding
Large Language
Models

Learning Their Underlying Concepts
and Technologies
—
Thimira Amaratunga

Understanding Large
Language Models
Learning Their Underlying

Concepts and Technologies

Thimira Amaratunga

Understanding Large Language Models: Learning Their Underlying

Concepts and Technologies

ISBN-13 (pbk): 979-8-8688-0016-0 ISBN-13 (electronic): 979-8-8688-0017-7
https://doi.org/10.1007/979-8-8688-0017-7

Copyright © 2023 by Thimira Amaratunga

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Smriti Srivastava
Development Editor: Laura Berendson
Editorial Project Manager: Shaul Elson

Cover designed by eStudioCalamar

Cover image designed by Cai Fang from Unsplash

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1
New York Plaza, Suite 4600, New York, NY 10004-1562, USA. Phone 1-800-SPRINGER, fax (201)
348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media,
LLC is a California LLC and the sole member (owner) is Springer Science + Business Media
Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub. For more detailed information, please visit https://www.apress.com/gp/
services/source-code.

Paper in this product is recyclable

Thimira Amaratunga
Nugegoda, Sri Lanka

https://doi.org/10.1007/979-8-8688-0017-7

Dedicated to all who push the boundaries of knowledge.

v

About the Author ���xi

About the Technical Reviewer ���xiii

Acknowledgments ��xv

Preface ���xvii

Chapter 1: Introduction���1

A Brief History of AI ���2

Where LLMs Stand ��6

Summary���7

Chapter 2: NLP Through the Ages ���9

History of NLP ���9

Formal Grammars ��11

Transformational Grammar and Generative Grammar �����������������������������������11

Parsing and Syntactic Analysis ��11

Context and Semantics ��11

Language Understanding���12

Knowledge Engineering ���12

Probabilistic Models ��13

Hidden Markov Models ��13

N-Gram Language Models ���13

Maximum Entropy Models ���13

Conditional Random Fields ��14

Table of Contents

vi

Large Annotated Corpora ���14

Word Sense Disambiguation ���14

Machine Translation ��14

Information Retrieval ���14

Statistical Approaches ���15

Availability of Large Text Corpora ��15

Supervised Learning for NLP Tasks ���15

Named Entity Recognition ���16

Sentiment Analysis ��16

Machine Translation ��16

Introduction of Word Embeddings ���16

Deep Learning and Neural Networks ���16

Deployment in Real-World Applications ��17

Tasks of NLP ���17

Basic Concepts of NLP ��18

Tokenization ��20

Corpus and Vocabulary ��21

Word Embeddings ���24

Language Modeling ���34

N-Gram Language Models ���36

Neural Language Models ���43

Summary���53

Chapter 3: Transformers ���55

Paying Attention ��55

The Transformer Architecture ���64

The Encoder ���66

The Decoder ��68

Table of ConTenTs

vii

Scaled Dot Product ��71

Multihead Attention ���76

Summary���79

Chapter 4: What Makes LLMs Large? ���81

What Makes a Transformer Model an LLM ��81

Number of Parameters ��82

Scale of Data ���82

Computational Power ��83

Fine-Tuning and Task Adaptation ���83

Capabilities ��83

Why Parameters Matter ���84

Computational Requirements ��84

Risk of Overfitting ��85

Model Size ���85

The Scale of Data ��86

Types of LLMs ���90

Based on the Architecture ���90

Based on the Training Objective ��91

Usage-Based Categorizations ���105

Foundation Models ��106

Pre-training on Broad Data ��106

Fine-Tuning and Adaptability ���107

Transfer Learning ��107

Economies of Scale ���107

General-Purpose Abilities ��107

Fine-Tuning Capabilities ��108

Transfer Learning ��108

Table of ConTenTs

viii

Economies of Scale ���108

Rapid Deployment ���108

Interdisciplinary Applications ��108

Reduced Training Overhead ���109

Continuous Adaptability ���109

Democratization of AI ��109

Applying LLMs ���109

Prompt Engineering ���109

Explicitness ���110

Examples as Guidance ��111

Iterative Refinement ��111

Controlling Verbosity and Complexity ��111

Systematic Variations ��111

Fine-Tuning ��114

Overfitting ���116

Catastrophic Forgetting ��116

Evaluation ���116

Summary���116

Chapter 5: Popular LLMs ��119

Generative Pre-trained Transformer ��119

Bidirectional Encoder Representations from Transformers ������������������������������127

Pathways Language Model ���128

Large Language Model Meta AI���129

Summary���130

Table of ConTenTs

ix

Chapter 6: Threats, Opportunities, and Misconceptions ��������������������131

LLMs and the Threat of a Superintelligent AI ��132

Levels of AI ��132

Existential Risk from an ASI ���135

Where LLMs Fit ��137

Misconceptions and Misuse��139

Opportunities ��145

Summary���148

Index ���149

Table of ConTenTs

xi

About the Author

Thimira Amaratunga is a senior software

architect at Pearson PLC Sri Lanka with more

than 15 years of industry experience. He is also

an inventor, author, and researcher in the AI,

machine learning, deep learning in education,

and computer vision domains.

Thimira has a master’s of science degree in

computer science and a bachelor’s degree in

information technology from the University of Colombo, Sri Lanka. He is

also a TOGAF-certified enterprise architect.

He has filed three patents in the fields of dynamic neural networks and

semantics for online learning platforms. He has published three books on

deep learning and computer vision.

Connect with him on LinkedIn: https://www.linkedin.com/in/

thimira-amaratunga.

https://www.linkedin.com/in/thimira-amaratunga
https://www.linkedin.com/in/thimira-amaratunga

xiii

About the Technical Reviewer

Kasam Shaikh is a prominent figure in India’s

artificial intelligence landscape, holding the

distinction of being one of the country’s first

four Microsoft Most Valuable Professionals

(MVPs) in AI. Currently serving as a senior

architect at Capgemini, Kasam boasts an

impressive track record as an author, having

written five best-selling books dedicated to

Azure and AI technologies. Beyond his writing

endeavors, Kasam is recognized as a Microsoft

Certified Trainer (MCT) and influential tech

YouTuber (@mekasamshaikh). He also leads the largest online Azure

AI community, known as DearAzure | Azure INDIA, and is a globally

renowned AI speaker. His commitment to knowledge sharing extends to

contributions to Microsoft Learn, where he plays a pivotal role.

Within the realm of AI, Kasam is a respected subject-matter expert

(SME) in generative AI for the cloud, complementing his role as a senior

cloud architect. He actively promotes the adoption of No Code and Azure

OpenAI solutions and possesses a strong foundation in hybrid and cross-

cloud practices. Kasam’s versatility and expertise make him an invaluable

asset in the rapidly evolving landscape of technology, contributing

significantly to the advancement of Azure and AI.

In summary, Kasam is a multifaceted professional who excels in both

technical expertise and knowledge dissemination. His contributions

span writing, training, community leadership, public speaking, and

architecture, establishing him as a true luminary in the world of Azure

and AI.

xv

Acknowledgments

The idea for this book came during my journey to understand the latest

developments in AI. In creating this book, I want to help others who seek

the same knowledge. Although this was my fourth book, it took a lot of

work. Luckily, I received support from many individuals along the way, for

whom I would like to express my sincere gratitude.

First, I would like to thank the team at Apress: Smriti Srivastava,

Sowmya Thodur, Laura Berendson, Shaul Elson, Mark Powers, Joseph

Quatela, Kasam Shaikh, Linthaa Muralidharan, and everyone involved in

the editing and publishing of this book.

To my loving wife, Pramitha. Thank you for the encouragement and

the motivation given from the inception of the idea to its completion.

Completing this might not have been possible without your support

through the long hours and days spent writing and perfecting this book.

To my colleagues and managers at Pearson PLC, who have guided me

throughout the years, I am grateful for your guidance and encouragement.

Finally, to my parents and sister, thank you for your endless support

throughout the years.

xvii

Preface

Today, finding someone who hasn’t heard of ChatGPT, the AI chatbot that

took the world by storm, is hard. ChatGPT—and its competitors such as

Google Bard, Microsoft Bing Chat, etc.—are part of a broader area in AI

known as large language models (LLMs). LLMs are the latest frontier in

AI, resulting from recent research into natural language processing (NLP)

and deep learning. However, the immense popularity these applications

have gained has created some concerns and misconceptions around them

because of a lack of understanding of what they truly are.

Understanding the concepts behind this new technology, including how

it evolved, and addressing the misconceptions and genuine concerns around

it are crucial for us to bring out its full potential. Therefore, this book was

designed to provide a crucial overall understanding of large language models.

In this book, you will do the following:

• Learn the history of AI and NLP leading up to large

language models

• Learn the core concepts of NLP that help define LLMs

• Look at the transformer architecture, a turning point in

NLP research

• See what makes LLMs special

• Understand the architectures of popular LLM applications

• Read about the concerns, threats, misconceptions, and

opportunities presented by using LLMs

This is not a coding book. However, this book will provide a strong

foundation for understanding LLMs as you take your first steps toward them.

1© Thimira Amaratunga 2023
T. Amaratunga, Understanding Large Language Models,
https://doi.org/10.1007/979-8-8688-0017-7_1

CHAPTER 1

Introduction
It was late 2022. Reports were coming in about a new AI that had human-

like conversational skills and seemingly infinite knowledge. Not only was

it able to articulate answers to a large number of subject domains such

as science, technology, history, and philosophy, it was able to elaborate

on the answers it gave and perform meaningful follow-up conversations

about them.

This was ChatGPT, a large language model (LLM) chatbot developed

by OpenAI. ChatGPT has been trained on a massive dataset of both text

and code, giving it the ability to generate code as well as creative text

content. Being optimized for conversations, ChatGPT allowed users to

steer the conversations to generate the desired content by considering the

succeeding prompts and replies as context.

Because of these capabilities and it being made available to the

general public, ChatGPT gained immense popularity. It became the

fastest-growing consumer software application in history. Since release,

it has been covered by major news outlets, reviewed in both technical

and nontechnical industries, and even referenced in government

documents. The amount of interest shown in ChatGPT by the general

public is something previously unheard of. The availability of it has made

a substantial impact on many industries both directly and indirectly.

This has resulted in both enthusiasm and concerns about AI and its

capabilities.

https://doi.org/10.1007/979-8-8688-0017-7_1

2

While being the most popular LLM product, ChatGPT is barely the

tip of the iceberg when it comes to the capabilities of large language

models. Ushered in by the advancements of deep learning, natural

language processing (NLP), and the ever-increasing processing power

of data processing, LLMs are the bleeding edge of generative AI. The

technology has been in active development since 2018. ChatGPT is not

the first LLM. In fact, it was not even the first LLM from OpenAI. It was,

however, the most impactful one to reach the general public. The success

of ChatGPT has also triggered a wave of competitor conversational AI

platforms, such as Bard from Google and LLaMA from Meta AI, pushing

the boundaries of the technology further.

As with any new technology, not everyone seems to have grasped

what LLMs really are. Also, while many have expressed enthusiasm

regarding LLMs and their capabilities, there are concerns being raised. The

concerns range from AI taking over certain job roles, disruption of creative

processes, forgeries, and existential risk brought on by superintelligent

AIs. However, some of these concerns are due to the misunderstanding of

LLMs. There are real potential risks associated with LLMs. But it may not

be from where most people are thinking.

To understand both the usefulness and the risks, we must first learn

how LLMs work and the history of AI that led to the development of LLMs.

 A Brief History of AI
Humans have always been intrigued by the idea of intelligent machines:

the idea that machines or artificial constructs can be built with intelligent

behavior, allowing them to perform tasks that typically require human

intelligence. This idea pre-dates the concept of computers, and written

records of the idea can be traced back to the 13th century. By the 19th

century, it was this idea that brought forward concepts such as formal

reasoning, propositional logic, and predicate calculus.

Chapter 1 IntroduCtIon

3

In June 1956, many expert mathematicians and scientists who were

enthusiasts in the subject of intelligent machines came together for a

conference at Dartmouth College (New Hampshire, US). This conference—

The Dartmouth Summer Research Project on Artificial Intelligence—was

the starting point of the formal research field of artificial intelligence. It

was at this conference that the Logic Theorist, developed by Allen Newell,

Herbert A. Simon, and Cliff Shaw and what is now considered to be the

first artificial intelligence program, was also presented. The Logic Theorist

was meant to mimic the logical problem-solving of a human and was able

to prove 38 out of the first 52 theorems in Principia Mathematica (a book

on the principles of mathematics written by Alfred North Whitehead and

Bertrand Russell).

After its initiation, the field of artificial intelligence branched out

into several subfields, such as expert systems, computer vision, natural

language processing, etc. These subfields often overlap and build upon

each other. Over the following years, AI has experienced several waves

of optimism, followed by disappointment and the loss of funding (time

periods referred to as AI winters, which are followed by new approaches

being discovered, success, and renewed funding and interest).

One of the main obstacles the researchers of AI faced at the time

was the incomplete understanding of intelligence. Even today we lack a

complete understanding of how human intelligence works. By the late

1990s, researchers proposed a new approach: rather than attempting to

code intelligent behavior into a system, build a system that can grow its

own intelligence. This idea created a new subfield of AI named machine

learning.

The main aim of machine learning (ML) is to provide machines with

the ability to learn without explicit programming, in the hopes that such

systems once built will be able to evolve and adapt when they are exposed

to new data. The core idea is the ability of a learner to generalize from

experience. The learner (the AI system being trained), once given a set of

Chapter 1 IntroduCtIon

4

training samples, must be able to build a generalized model upon them,

which would allow it to decide upon new cases with sufficient accuracy.

Such training in ML can be provided in three main methods.

• Supervised learning: the system is given a set of labeled

cases (training set) based on which the system is

asked to create a generalized model that can act on

unseen cases.

• Unsupervised learning: The system is given a set of

unlabeled cases and asked to find a pattern in them.

This is ideal for discovering hidden patterns.

• Reinforcement learning: The system is asked to take

any action and is given a reward or a penalty based on

how appropriate that action is to the given situation.

The system must learn which actions yield the most

rewards in given situations over time.

Machine learning can also use a combination of these main learning

methods, such as semi-supervised learning in which a small number of

labeled examples are used with a large set of unlabeled data for training.

With these base concepts of machine learning several models were

introduced as means of implementing trainable systems and learning

techniques, such as artificial neural networks (models inspired by how

neurons of the brain work), decision trees (models that use tree-like

structures to model decisions and outcomes), regression models (models

that use statistical methods to map input and output variables), etc. These

models proved exceptionally effective in areas such as computer vision

and natural language processing.

The success of machine learning saw a steady growth in AI research

and applications over the next decade. By around 2010 few other factors

occurred that pushed their progress further.

Chapter 1 IntroduCtIon

5

Building AI models, especially machine learning models such as

neural networks, has always been computationally intensive. By the early

2010s computing power started becoming cheaper and more available

as more powerful and efficient processors were becoming available. In

addition, specialist hardware platforms that benefited AI model training

became available. This allowed more complex models to be evaluated.

In parallel, the cost of data storage and processing continued to decline.

This made collecting and processing large datasets more viable. Finally,

advancements in the medical field increased the understanding of how

the natural brain works. This new knowledge, and the availability of

processing power and data, allowed more complex neural network models

to be created and trained.

It was identified that the natural brain uses a hierarchical method

to obtain knowledge, by building complicated concepts out of simpler

ones. The brain does this by identifying lower-level patterns from the

raw inputs and then building upon those patterns to learn higher-level

features over many levels. This technique, when modeled on machine

learning, is known as hierarchical feature learning and allows such

systems to automatically learn complex features through multiple levels of

abstraction with minimal human intervention. When applying hierarchical

feature learning to neural networks, it results in deep networks with many

feature learning layers. Thus, this approach was called deep learning.

A deep learning model will not try to understand the entire problem

at once. Instead, it will look at the input, piece by piece, so that it can

derive from its lower-level patterns/features. It then uses these lower-level

features to gradually identify higher-level features, through many layers,

hierarchically. This allows deep learning models to learn complicated

patterns, by gradually building them up from simpler ones, allowing them

to comprehend the world better.

Deep learning models were immensely successful in the tasks they

were trained on, resulting in many deep learning architectures being

developed such as convolutional neural networks (CNNs), stacked

Chapter 1 IntroduCtIon

6

autoencoders, generative adversarial networks (GANs), transformers,

etc. Their success resulted in deep learning architectures being applied

to many other AI fields such as computer vision and natural language

processing.

In 2014, with the advancements in models such as variational

autoencoders and generative adversarial networks, deep learning

models were able to generate new data based on what they learned from

their training. With the introduction of the transformer deep learning

architecture in 2017, such capabilities were pushed even further. These

latest generations of AI models were named generative AI and within a

few short years were able to generate images, art, music, videos, code, text,

and more.

This is where LLMs come into the picture.

 Where LLMs Stand
Large language models are the result of the combination of natural

language processing, deep learning concepts, and generative AI models.

Figure 1-1 shows where LLMs stand in the AI landscape.

Chapter 1 IntroduCtIon

7

Figure 1-1. Where LLMs are in the AI landscape

 Summary
In this chapter, we went through the history of AI and how it has evolved.

We also looked at where large language models stand in the broader

AI landscape. In the next few chapters, we will look at the evolution of

NLP and its core concepts, the transformer architecture, and the unique

features of LLMs.

Chapter 1 IntroduCtIon

9© Thimira Amaratunga 2023
T. Amaratunga, Understanding Large Language Models,
https://doi.org/10.1007/979-8-8688-0017-7_2

CHAPTER 2

NLP Through the
Ages
Natural language processing (NLP) is a subfield of artificial intelligence

and computational linguistics. It focuses on enabling computers to

understand, interpret, and generate human language in a way that is

both meaningful and useful. The primary goal of NLP is to bridge the

gap between human language and computer understanding, allowing

machines to process, analyze, and respond to natural language data.

NLP is the heart of large language models (LLMs). LLMs would

not exist without the concepts and algorithms developed through NLP

research over the years. Therefore, to understand LLMs, we need to

understand the concepts of NLP.

 History of NLP
The conception of natural language processing dates to the 1950s. In

1950, Alan Turing published an article titled “Computing Machinery and

Intelligence,” which discussed a method to determine whether a machine

exhibits human-like intelligence. This proposed test, most popularly

referred to as the Turing test, is widely considered as what inspired early

NLP researchers to attempt natural language understanding.

https://doi.org/10.1007/979-8-8688-0017-7_2

10

The Turing test involves a setup where a human evaluator interacts

with both a human and a machine without knowing which is which.

The evaluator’s task is to determine which participant is the machine

and which is the human based solely on their responses to questions or

prompts. If the machine is successful in convincing the evaluator that it

is human, then it is said to have passed the Turing test. The Turing test

thus provided a concrete and measurable goal for AI research. Turing’s

proposal sparked interest and discussions about the possibility of

creating intelligent machines that could understand and communicate in

natural language like humans. This led to the establishment of NLP as a

fundamental research area within AI.

In 1956, with the establishment of the artificial intelligence research

field, NLP became an established field of research in AI, making it one of

the oldest subfields in AI research.

During the 1960s and 1970s, NLP research predominantly relied on

rule-based systems. One of the earliest NLP programs was the ELIZA

chatbot, developed by Joseph Weizenbaum between 1964 and 1966. ELIZA

used pattern matching and simple rules to simulate conversation between

the user and a psychotherapist. With an extremely limited vocabulary

and ruleset ELIZA was still able to articulate human-like interactions. The

General Problem Solver (GPS) system, developed in the 1970s by Allen

Newell and Herbert A. Simon, working with means-end analysis, also

demonstrated some language processing capabilities.

In the 1970s and 1980s, NLP research began to incorporate linguistic

theories and principles to understand language better. Noam Chomsky’s

theories on generative grammar and transformational grammar influenced

early NLP work. These approaches aimed to use linguistic knowledge and

formal grammatical rules to understand and process human language.

The following are some key aspects of linguistic-based

approaches in NLP.

Chapter 2 NLp through the ages

11

 Formal Grammars
Linguistics-based NLP heavily relied on formal grammars, such as

context-free grammars and phrase structure grammars. These formalisms

provided a way to represent the hierarchical structure and rules of natural

language sentences.

 Transformational Grammar and Generative
Grammar
Noam Chomsky’s transformational grammar and generative grammar

theories significantly influenced early NLP research. These theories

focused on the idea that sentences in a language are generated from

underlying abstract structures, and rules of transformation govern the

relationship between these structures.

 Parsing and Syntactic Analysis
Parsing, also known as syntactic analysis, was a crucial aspect of

linguistics-based NLP. It involved breaking down sentences into their

grammatical components and determining the hierarchical structure.

Researchers explored various parsing algorithms to analyze the syntax of

sentences.

 Context and Semantics
Linguistics-based approaches aimed to understand the context and

semantics of sentences beyond just their surface structure. The focus was

on representing the meaning of words and phrases in a way that allowed

systems to reason about their semantic relationships.

Chapter 2 NLp through the ages

12

 Language Understanding
Linguistics-based NLP systems attempted to achieve deeper language

understanding by incorporating syntactic and semantic knowledge. This

understanding was crucial for more advanced NLP tasks, such as question

answering and natural language understanding.

 Knowledge Engineering
In many cases, these approaches required manual knowledge engineering,

where linguistic rules and structures had to be explicitly defined by human

experts. This process was time-consuming and limited the scalability of

NLP systems.

There are, however, some limitations in linguistics-based NLP

approaches. While linguistics-based approaches had theoretical

appeal and offered some insights into language structure, they also

faced limitations. The complexity of natural languages and the vast

number of exceptions to linguistic rules made it challenging to develop

comprehensive and robust NLP systems solely based on formal grammars.

Because of these limitations, while linguistic theories continued to

play a role in shaping the NLP field, they were eventually complemented

and, in some cases, surpassed by data-driven approaches and statistical

methods.

During the 1990s and 2000s, NLP started shifting its focus from

rule-based and linguistics-driven systems to data-driven methods.

These approaches leveraged large amounts of language data to build

probabilistic models, leading to significant advancements in various

NLP tasks.

Statistical NLP methods used several approaches and applications. Let

us look at a few next.

Chapter 2 NLp through the ages

13

 Probabilistic Models
Statistical approaches relied on probabilistic models to process and

analyze language data. These models assigned probabilities to different

linguistic phenomena based on their occurrences in large annotated

corpora.

 Hidden Markov Models
Hidden Markov models (HMMs) were one of the early statistical models

used in NLP. They were employed for tasks such as part-of-speech tagging

and speech recognition. HMMs use probability distributions to model the

transition between hidden states, which represent the underlying linguistic

structures.

 N-Gram Language Models
N-gram language models became popular during this era. They predicted

the likelihood of a word occurring given the preceding (n-1) words.

N-grams are simple but effective for tasks such as language modelling,

machine translation, and information retrieval.

 Maximum Entropy Models
Maximum entropy (MaxEnt) models were widely used in various NLP

tasks. They are a flexible probabilistic framework that can incorporate

multiple features and constraints to make predictions.

Chapter 2 NLp through the ages

14

 Conditional Random Fields
Conditional random fields (CRFs) gained popularity for sequence labeling

tasks, such as part-of-speech tagging and named entity recognition. CRFs

model the conditional probabilities of labels given the input features.

 Large Annotated Corpora
Statistical approaches relied on large annotated corpora for training and

evaluation. These corpora were essential for estimating the probabilities used

in probabilistic models and for evaluating the performance of NLP systems.

 Word Sense Disambiguation
Statistical methods were applied to word sense disambiguation (WSD)

tasks, where the goal was to determine the correct sense of a polysemous

word based on context. Supervised and unsupervised methods were

explored for this task.

 Machine Translation
Statistical machine translation (SMT) systems emerged, which used

statistical models to translate text from one language to another. Phrase-

based and hierarchical models were common approaches in SMT.

 Information Retrieval
Statistical techniques were applied to information retrieval tasks, where

documents were ranked based on their relevance to user queries.

While statistical approaches showed great promise, they still faced

challenges related to data sparsity, handling long-range dependencies in

language, and capturing complex semantic relationships between words.

Chapter 2 NLp through the ages

15

During the 2000s and 2010s, as we discussed in the history of AI,

there was a significant rise in the application of machine learning (ML)

techniques. This period witnessed tremendous advancements in ML

algorithms, computational power, and the availability of large text corpora,

which fueled the progress of NLP research and applications.

Several key developments contributed to the rise of machine learning–

based NLP during this time. Let us explore a few of them.

 Statistical Approaches
Statistical approaches became dominant in NLP during this period.

Instead of hand-crafted rule-based systems, researchers started using

probabilistic models and ML algorithms to solve NLP tasks. Techniques

like HMMs, CRFs, and support vector machines (SVMs) gained popularity.

 Availability of Large Text Corpora
The rise of the Internet and digitalization led to the availability of vast

amounts of text data. Researchers could now train ML models on large

corpora, which greatly improved the performance of NLP systems.

 Supervised Learning for NLP Tasks
Supervised learning became widely used for various NLP tasks. With

labeled data for tasks like part-of-speech tagging, named entity recognition

(NER), sentiment analysis, and machine translation, researchers could

train ML models effectively.

Chapter 2 NLp through the ages

16

 Named Entity Recognition
ML-based NER systems, which identify entities such as the names of people,

organizations, and locations in text, became more accurate and widely used.

This was crucial for information extraction and text understanding tasks.

 Sentiment Analysis
Sentiment analysis or opinion mining gained prominence, driven by the

increasing interest in understanding public opinions and sentiments

expressed in social media and product reviews.

 Machine Translation
Statistical machine translation (SMT) systems, using techniques such

as phrase-based models, started to outperform rule-based approaches,

leading to significant improvements in translation quality.

 Introduction of Word Embeddings
Word embeddings, like Word2Vec and GloVe, revolutionized NLP by

providing dense vector representations of words. These embeddings

captured semantic relationships between words, improving performance

in various NLP tasks.

 Deep Learning and Neural Networks
The advent of deep learning and neural networks brought about a

paradigm shift in NLP. Models like recurrent neural networks (RNNs), long

short-term memory (LSTM), and convolutional neural networks (CNNs)

significantly improved performance in sequence-to-sequence tasks,

sentiment analysis, and machine translation.

Chapter 2 NLp through the ages

17

 Deployment in Real-World Applications
ML-based NLP systems found practical applications in various industries,

such as customer support chatbots, virtual assistants, sentiment analysis

tools, and machine translation services.

The combination of statistical methods, large datasets, and the advent

of deep learning paved the way for the widespread adoption of ML-based

NLP during the 2000s and 2010s.

Toward the end of the 2010s, pre-trained language models like ELMo,

Generative Pre-trained Transformer (GPT), and Bidirectional Encoder

Representations from Transformers (BERT) emerged. These models

were pre-trained on vast amounts of data and fine-tuned for specific NLP

tasks, achieving state-of-the-art results in various benchmarks. These

developments enabled significant progress in language understanding,

text generation, and other NLP tasks, making NLP an essential part of

many modern applications and services.

 Tasks of NLP
With the primary goal of bridging the gap between human language and

computer understanding, over its history, NLP has been applied to several

tasks concerning language.

• Text classification: Assigning a label or category to

a piece of text. For example, classifying emails as

spam or not spam, sentiment analysis (identifying

the sentiment as positive, negative, or neutral), topic

categorization, etc.

• NER: Identifying and classifying entities mentioned

in the text, such as names of people, organizations,

locations, dates, and more.

Chapter 2 NLp through the ages

18

• Machine translation: Automatically translating text

from one language to another.

• Text generation: Creating human-like text, which could

be in the form of chatbots, autogenerated content, or

text summarization.

• Speech recognition: Converting spoken language into

written text.

• Text summarization: Automatically generating a

concise and coherent summary of a longer text.

• Question answering: Providing accurate answers to

questions asked in natural language.

• Language modeling: Predicting the likelihood of a given

sequence of words occurring in a language.

The combination of one or more of these tasks forms the basis of

current NLP applications.

 Basic Concepts of NLP
To achieve the previously mentioned tasks, NLP employs a set of key

concepts. These are some of the most common:

• Tokenization: Tokenization is the process of breaking

down a text into smaller units, typically words or

subwords. These smaller units are called tokens, and

tokenization is an essential preprocessing step in most

NLP tasks.

• Stopword removal: Stopwords are common words

(e.g., the, is, and) that often appear in a text but carry

little semantic meaning. Removing stopwords can help

reduce noise and improve computational efficiency.

Chapter 2 NLp through the ages

19

• Part-of-speech (POS) tagging: POS tagging involves

assigning grammatical tags (e.g., noun, verb, adjective)

to each word in a sentence, indicating its syntactic role.

• Parsing: Parsing involves analyzing the grammatical

structure of a sentence to understand the relationships

between words and phrases. Dependency parsing and

constituency parsing are common parsing techniques.

• Word embeddings: Word embeddings are dense

vector representations of words that capture semantic

relationships between words. Word2Vec and GloVe are

popular word embedding models.

• NER: NER is the process of identifying and classifying

named entities mentioned in the text, such as names of

people, organizations, locations, dates, etc.

• Stemming and lemmatization: Stemming and

lemmatization are techniques used to reduce words to

their base or root form. For example, running, runs, and

ran might all be stemmed or lemmatized to run.

• Language models: Language models predict the

likelihood of a sequence of words occurring in a

language. They play a crucial role in various NLP tasks,

such as machine translation and text generation.

Apart from these other task-specific techniques such as sequence-

to- sequence models, attention mechanisms and transfer learning

mechanisms are also used in NLP.

Let us investigate some of these concepts in depth, which will give us a

better understanding of the internal workings of LLMs.

Chapter 2 NLp through the ages

20

 Tokenization
Tokenization is the process of breaking down a text or a sequence of

characters into smaller units, called tokens. In NLP, tokens are typically

words or subwords that form the basic building blocks for language

processing tasks. Tokenization is a crucial preprocessing step before text

can be used in various NLP applications.

Let’s take an example sentence: “I love natural language processing!”

The word level tokenization output would be as follows:

["I", "love", "natural", "language", "processing", "!"]

In this example, the tokenization process splits the sentence into

individual words, removing any punctuation. Each word in the sentence

becomes a separate token, forming a list of tokens.

Tokenization can be performed using various methods, and the choice

of tokenizer depends on the specific NLP task and the characteristics of the

text data. Some common tokenization techniques include the following:

• Whitespace tokenization: The text is split into tokens

based on whitespace (spaces, tabs, newlines). It’s a

simple and common approach for English text and can

handle most cases, but it may not handle special cases

like hyphenated words or contractions well.

• Punctuation tokenization: The text is split based

on punctuation marks, such as periods, commas,

exclamation marks, etc. It can be useful when handling

text with significant punctuation, but it may result

in issues when dealing with abbreviations or other

special cases.

Chapter 2 NLp through the ages

21

• Word tokenization: This is a more advanced tokenizer

that uses language-specific rules to split text into words.

It can handle special cases like hyphenated words,

contractions, and punctuation in a more linguistically

accurate manner.

• Subword tokenization: Subword tokenization methods

like byte-pair encoding (BPE) and SentencePiece

split words into subword units, allowing the model to

handle out-of-vocabulary words and handle rare or

unseen words more effectively.

The choice of tokenizer can depend on the specific use case and

requirements of the NLP task. Tokenization is the first step in converting

raw text into a format that can be processed and analyzed by NLP models

and algorithms.

 Corpus and Vocabulary
In NLP, a corpus refers to a large collection of text documents or utterances

that are used as a dataset for language analysis and model training. A

corpus serves as the primary source of data for various NLP tasks, allowing

researchers and practitioners to study language patterns, extract linguistic

information, and develop language models.

A corpus can take various forms depending on the specific NLP task or

research objective. Some common types of corpora include the following:

• Text corpora: A text corpus is a collection of written text

documents, such as books, articles, web pages, emails,

and social media posts. Text corpora are commonly

used for tasks such as language modeling, sentiment

analysis, text classification, and information retrieval.

Chapter 2 NLp through the ages

22

• Speech corpora: A speech corpus consists of audio

recordings or transcriptions of spoken language.

Speech corpora are used in tasks such as speech

recognition, speaker identification, and emotion

detection.

• Parallel corpora: A parallel corpus contains text in

multiple languages that are aligned at the sentence or

document level. Parallel corpora are used for machine

translation and cross-lingual tasks.

• Treebanks: Treebanks are annotated corpora that

include syntactic parse trees, representing the

grammatical structure of sentences. Treebanks are

used in tasks like parsing and syntax-based machine

learning.

• Multimodal corpora: Multimodal corpora include

text along with other modalities, such as images,

videos, or audio. They are used in tasks that involve

understanding and generating information from

multiple modalities.

Building and curating high-quality corpora is essential for the success

of various NLP applications, as the performance and generalization of

language models heavily rely on the quality and diversity of the data they

are trained on.

A vocabulary in NLP refers to the set of unique words or tokens present

in a corpus of text. It is a fundamental component of language processing,

as it defines the complete list of words that a model or system can

understand and work with.

Chapter 2 NLp through the ages

23

When processing text data, the following steps are typically performed

to create a vocabulary:

 1. Tokenization: The text is split into individual tokens,

which can be words, subwords, or characters,

depending on the tokenization strategy used.

 2. Filtering and normalization: Common

preprocessing steps such ss converting text to

lowercase, removing punctuation, and filtering out

stopwords are applied to clean the data and reduce

the size of the vocabulary.

 3. Building vocabulary: After tokenization and

preprocessing, the unique tokens in the text data

are collected to form the vocabulary. Each token is

assigned a unique numerical index, which serves as

its representation in the model or during encoding

processes.

The vocabulary is often used to create numerical representations

of text data. In many NLP models, words are represented as dense

vectors (word embeddings) where each word’s embedding is indexed

using its integer representation in the vocabulary. This allows words to

be processed and manipulated as numerical data, making it easier for

machine learning models to work with textual information.

The size of the vocabulary depends on the corpus of text used for

training the model. Large-scale models, such as LLMs, often have very

extensive vocabularies containing hundreds of thousands or even millions

of unique words.

Handling the vocabulary size can be a challenge, as very large vocabularies

require more memory and computational resources. Techniques like

subword tokenization, which splits words into subword units, and methods

like Byte-Pair Encoding (BPE) or SentencePiece, can be used to handle large

vocabularies more efficiently and handle rare or out-of-vocabulary words.

Chapter 2 NLp through the ages

24

 Word Embeddings
Word embeddings are dense vector representations of words in a

continuous vector space, where similar words are closer to each other.

These representations capture semantic relationships between words,

allowing NLP models to understand word meanings based on their

context.

The main advantages of word embeddings are as follows:

• Semantic meaning: Word embeddings capture

semantic meaning and relationships between words.

Similar words are close to each other in the embedding

space, and analogies like “man is to woman as king is to

queen” can be represented as vector arithmetic.

• Dimensionality reduction: Word embeddings reduce

the dimensionality of the word representation

compared to one-hot encodings. While one-hot

encodings are binary vectors with a length equal to the

vocabulary size, word embeddings typically have much

smaller fixed dimensions (e.g., 100, 300) regardless of

the vocabulary size.

• Generalization: Word embeddings generalize across

words, allowing models to learn from limited data.

Words that share similar contexts tend to have similar

embeddings, which enables models to understand the

meaning of new words based on their context.

• Continuous space: The embedding space is continuous,

enabling interpolation and exploration of relationships

between words. For example, one can add the vector

for “Spain” to “capital” and subtract “France” to find a

vector close to “Madrid.”

Chapter 2 NLp through the ages

25

Word embeddings are a fundamental tool in NLP and have greatly

improved the performance of various NLP tasks, such as machine

translation, sentiment analysis, text classification, and information retrieval.

Popular word embedding methods include simpler methods such as bag-

of-words (BoW) to more sophisticated methods such as Word2Vec, Global

Vectors for Word Representation (GloVe), and fastText. These methods

learn word embeddings by considering the co-occurrence patterns of words

in large text corpora, allowing the representations to capture the semantic

meaning and contextual relationships of words in the language.

Let us investigate two of these methods, bag-of-words and Word2Vec,

in more detail.

 Bag-of-Words

The BoW method is a simple and popular technique for text

representation. It disregards the order and structure of words in a

document and focuses on the frequency of each word in the text. The

BoW model represents a document as a histogram of word occurrences,

creating a “bag” of words without considering their sequence.

Here are the steps of the bag-of-words method:

 1. Tokenization: The first step is to break down the text

into individual words or tokens.

 2. Vocabulary creation: The BoW model creates a

vocabulary, which is a list of all unique words

found in the corpus. Each word in the vocabulary is

assigned a unique index.

 3. Vectorization: To represent a document using BoW,

a vector is created for each document, with the

length equal to the size of the vocabulary. Each

element of the vector corresponds to a word in the

vocabulary, and its value represents the frequency

of that word in the document.

Chapter 2 NLp through the ages

26

Here is an example on the bag-of-words method:

Let us take a corpus of the following three sentences:

• “I love to eat pizza.”

• “She enjoys eating pasta.”

• “They like to cook burgers.”

Step 1: Tokenization
The tokens in the corpus are: [“I”, “love”, “to”, “eat”, “pizza”, “She”,

“enjoys”, “eating”, “pasta”, “They”, “like”, “to”, “cook”, “burgers”].

Step 2: Vocabulary Creation
The vocabulary contains all unique words from the tokenized corpus:

[“I”, “love”, “to”, “eat”, “pizza”, “She”, “enjoys”, “eating”, “pasta”, “They”, “like”,

“cook”, “burgers”].

The vocabulary size is 13.

Step 3: Vectorization
Now, each document is represented as a vector using the vocabulary.

The vectors for the three sentences will be as follows:

[1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0]

(The vector shows that the words I, love, to, eat, and pizza appear once

in the document.)

[0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0]

(The vector shows that the words She, enjoys, eating, and pasta appear

once in the document.)

[0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1]

(The vector shows that the words They, like, to, cook, and burgers

appear once in the document.)

Note that the order of the words is lost in the BoW representation, and

each document is represented solely based on the frequency of the words

present in it.

Chapter 2 NLp through the ages

27

The BoW method is a straightforward and effective way to convert text

into numerical vectors for use in various machine learning algorithms and

NLP tasks, such as text classification and information retrieval. However,

it does not consider the context or semantics of words, which can limit its

ability to capture deeper meaning in language data.

 Word2Vec

Word2Vec is a popular and influential word embedding method in NLP. It

was introduced by Tomas Mikolov et al. at Google in 2013 and has since

become a foundational technique in various NLP tasks. The main idea

behind Word2Vec is to represent words as points in a high-dimensional

space, where the relative positions of words capture their semantic

relationships and contextual similarities. Words that appear in similar

contexts or have similar meanings are mapped to vectors that are close to

each other in the embedding space.

There are two primary architectures for training Word2Vec models.

• Continuous bag-of-words (CBOW)

CBOW aims to predict the target word given its context

(surrounding words). It uses a neural network to learn

word embeddings by taking the context words as input

and predicting the target word.

The context words are represented as one-hot-encoded

vectors or embeddings, and they are averaged to form a

single context vector.

The CBOW model tries to minimize the prediction

error between the predicted target word and the actual

target word.

Chapter 2 NLp through the ages

28

• Skip-gram

Skip-gram, on the other hand, aims to predict the

context words given a target word. It tries to learn the

embeddings by maximizing the likelihood of the context

words given the target word.

The target word is represented as a one-hot-encoded

vector or embedding, and the model tries to predict the

surrounding context words based on this representation.

Skip-gram is often preferred when the dataset is large, as

it generates more training examples by considering all

the context words for each target word.

During training, Word2Vec uses a shallow neural network to learn the

embeddings. The weights of the neural network are updated during the

training process using stochastic gradient descent or similar optimization

techniques. The objective is to learn word embeddings that effectively

capture the word semantics and co-occurrence patterns in the corpus.

Once trained, the Word2Vec model provides word embeddings

that can be used as input to various NLP tasks or serve as a powerful

representation for downstream applications. The trained embeddings

can be used in tasks such as sentiment analysis, machine translation,

document classification, and information retrieval, where they capture the

meaning and relationships between words in a continuous vector space.

Word2Vec has been instrumental in advancing the performance of NLP

models by enabling them to work effectively with textual data in a more

semantically meaningful manner.

Chapter 2 NLp through the ages

29

The typical process to train a Word2Vec model would involve the

following steps:

 1. Data preparation:

Gather a large corpus of text data that will be used

for training the Word2Vec model. The corpus should

represent the domain or language you want to

capture word embeddings for.

 2. Tokenization:

Tokenize the text data to break it down into

individual words or subwords. Remove any

unwanted characters, punctuation, and stopwords

during tokenization.

 3. Create context-target pairs:

For each target word in the corpus, create context-

target pairs. The context is a window of words

surrounding the target word. The size of the window

is a hyperparameter, typically set to a small value

like 5 to 10 words. The context-target pairs are used

to train the model to predict the context given the

target word, or vice versa.

 4. Convert words to indices:

Convert the words in the context-target pairs into

numerical indices, as Word2Vec models typically

work with integer word indices rather than actual

word strings.

Chapter 2 NLp through the ages

30

 5. Create training examples:

Use the context-target pairs to create training

examples for the Word2Vec model. Each training

example consists of a target word (input) and its

corresponding context words (output) or vice

versa, depending on the architecture (CBOW or

skip-gram).

 6. Architecture selection:

Choose the architecture you want to use for the

Word2Vec model. The two main architectures are

the following:

• CBOW: Predict the target word based on the

context words.

• Skip-gram: Predict the context words based on

the target word.

 7. Define the neural network:

Create a shallow neural network for the chosen

architecture. The network will consist of an

embedding layer that represents words as dense

vectors and a softmax layer (for CBOW) or negative

sampling (for skip-gram) to perform the word

predictions.

 8. Training:

Train the Word2Vec model on the training

examples using stochastic gradient descent or other

optimization algorithms. The objective is to minimize

the prediction loss, which measures the difference

between predicted and actual context or target words.

Chapter 2 NLp through the ages

31

 9. Learn word embeddings:

As the model trains, the embedding layer learns to

map each word to a dense vector representation.

These word embeddings capture semantic

relationships and meaning based on the co-

occurrence patterns of words in the corpus.

 10. Evaluation:

After training, evaluate the quality of the learned

word embeddings on downstream NLP tasks, such

as word similarity, analogies, or text classification,

to ensure they capture meaningful semantic

information.

The training process may require hyperparameter tuning, and the

model may need to be trained on a large corpus and for multiple epochs to

learn effective word embeddings. Once trained, the Word2Vec model can

be used to generate word vectors for any word in the vocabulary, enabling

the exploration of semantic relationships between words in a continuous

vector space.

Because of the popularity of the Word2Vec model, many machine

learning and NLP libraries have built-in implementations of it. This allows

you to easily utilize Word2Vec embeddings in your code without having to

manually train neural networks for it.

 Bag-of-Words vs. Word2Vec

While both Bag-of-Words and Word2Vec are text representation methods

in NLP there are some key differences between them.

Chapter 2 NLp through the ages

32

Representation

• Bag-of-Words (BoW): BoW represents a document as

a histogram of word occurrences, without considering

the order or structure of the words. It creates a “bag” of

words, and each element in the vector represents the

frequency of a specific word in the document.

• Word2Vec: Word2Vec, on the other hand, represents

words as dense vectors in a continuous vector space.

It captures the semantic meaning and relationships

between words based on their context in the corpus.

Word2Vec embeddings are learned through a shallow

neural network model trained on a large dataset.

Context and semantics

• BoW: BoW does not consider the context or semantics

of words in a document. It treats each word as an

independent entity and focuses only on the frequency

of occurrence.

• Word2Vec: Word2Vec leverages the distributional

hypothesis, which suggests that words with similar

meanings tend to appear in similar contexts. Word2Vec

captures word embeddings that encode semantic

relationships, allowing for better understanding of

word meanings and similarities based on context.

Vector size

• BoW: The size of the BoW vector is equal to the size

of the vocabulary in the corpus. Each word in the

vocabulary is represented by a unique index, and the

vector elements indicate the frequency of occurrence.

Chapter 2 NLp through the ages

33

• Word2Vec: Word2Vec generates dense word

embeddings, typically with a fixed size (e.g., 100, 300

dimensions). The size of the word embeddings is

generally much smaller compared to the BoW vector,

which can be useful for memory and computational

efficiency.

Order of words

• BoW: BoW ignores the order of words in the document,

as it treats each document as a collection of individual

words and their frequencies. The order of words is lost

in the BoW representation.

• Word2Vec: Word2Vec considers the order of words

in the context window during training. It learns word

embeddings by predicting the likelihood of words

appearing in the context of other words, which

allows it to capture word meanings based on the

surrounding words.

Application

• BoW: BoW is commonly used for text classification,

sentiment analysis, and information retrieval tasks. It

is a simple and effective representation for these tasks,

especially when the sequence of words is not crucial.

• Word2Vec: Word2Vec is more suitable for tasks that

require understanding word semantics and capturing

word relationships, such as word similarity, word

analogies, and language generation tasks.

Chapter 2 NLp through the ages

34

In summary, bag-of-words is a straightforward and interpretable

method that represents text using word frequencies but lacks contextual

understanding. Word2Vec, on the other hand, generates dense word

embeddings that capture semantic meaning and relationships between

words based on context, making it more suitable for various advanced

NLP tasks.

 Language Modeling
In natural language processing, language models are a class of models that

are designed to predict the likelihood of a sequence of words occurring in

a language. In other words, A language model is a probability distribution

over sequences of words. These models learn the statistical properties and

patterns present in a given language to generate new text or evaluate the

likelihood of a sentence.

Language models play a crucial role in various NLP tasks, such as

machine translation, speech recognition, text generation, sentiment

analysis, and more. They are fundamental to many advanced NLP

applications such as LLMs and have contributed significantly to the

success of modern NLP techniques.

Based on the tasks they perform language models can be broadly

classify into two categories:

• Generative language models: These models are

designed to generate new text based on the patterns

they have learned from the training data. They take a

seed input (known as a prompt or starting sequence)

and then generate the next word or sequence of words

one step at a time. Generative language models can

be used for tasks like text generation, story generation,

and poetry writing.

Chapter 2 NLp through the ages

35

• Predictive language models: These models are used

to predict the likelihood of the next word in a given

context. They take the previous words as input and

predict the most probable next word based on the

training data. Predictive language models are widely

used in tasks like autocomplete, next-word prediction,

and machine translation.

Based on their approach, there are primarily two types of

language models:

• N-gram language models: N-gram language models

are the simplest form. They predict the probability

of a word based on the occurrence of the previous

(n-1) words in the text. The “n” in n-gram refers to

the number of words in the sequence. For example,

a 2-gram (bigram) language model predicts the

probability of a word based on the previous word, and

a 3-gram (trigram) language model considers the two

preceding words.

Example (2-gram model):

Sentence: “I love to”

Probability of “to” given “I love”: P(to | I love)

N-gram models have limitations in capturing long-

range dependencies and contextual information, as they

consider only a fixed number of preceding words.

• Neural language models: Neural language models, also

known as neural network–based language models, are

more advanced and widely used in modern NLP. These

models use deep learning techniques to learn word

representations and capture complex relationships

between words in a more flexible manner.

Chapter 2 NLp through the ages

36

• Recurrent neural networks (RNNs): RNNs are one

of the earliest neural language models that can

consider variable-length context. They use a recurrent

architecture to process words sequentially while

maintaining a hidden state that captures the context.

• Long short-term memory (LSTM) and gated recurrent

units (GRUs): These are variations of RNNs designed to

address the vanishing gradient problem, allowing them

to capture long-range dependencies more effectively.

• Transformers: Transformers have revolutionized the

field of NLP and are the basis for many state-of-the-art

language models. Transformers utilize self-attention

mechanisms to process words in parallel, capturing

both short and long-range dependencies efficiently.

LLMs like Generative Pre-trained Transformer (GPT)

and Bidirectional Encoder Representations from

Transformers (BERT) are examples of successful

transformer-based language models.

Let us investigate each of the approaches to language models.

 N-Gram Language Models
N-gram language models are a class of statistical language models used in

NLP to predict the likelihood of a sequence of words (n-grams) occurring

in a given text. These models are based on the principle of conditional

probability, where the probability of a word is estimated based on the

context of the preceding words.

Chapter 2 NLp through the ages

37

In an N-gram language model, an “N-gram” refers to a contiguous

sequence of N words from a text. For example:

• Unigram (1-gram): Single words in isolation

• Bigram (2-gram): Pairs of consecutive words

• Trigram (3-gram): Triplets of consecutive words

• N-gram: A sequence of N consecutive words

The primary idea behind N-gram language models is to approximate

the probability of a word given its N-1 preceding words, as shown by the

following formula:

P(w_i | w_1, w_2, ..., w_{i-1}) ≈ Count(w_{i-N+1}, w_{i-N+2},
..., w_{i-1}, w_i) / Count(w_{i-N+1}, w_{i-N+2}, ..., w_{i-1})

where:

• P(w_i | w_1, w_2, ..., w_{i-1}) is the probability

of word w_i given the context of the preceding words

w_1, w_2, ..., w_{i-1}.

• Count(w_{i-N+1}, w_{i-N+2}, ..., w_{i-1}, w_i)

is the count of the N-gram (sequence) w_{i-N+1}, w_

{i-N+2}, ..., w_{i-1}, w_i in the training data.

• Count(w_{i-N+1}, w_{i-N+2}, ..., w_{i-1}) is the

count of the (N-1)-gram (sequence) w_{i-N+1}, w_{i-

N+2}, ..., w_{i-1} in the training data.

In practice, to compute these probabilities, a large corpus of text

is used as the training data. The model builds a frequency table of all

observed N-grams in the training data, and the probabilities are estimated

by dividing the count of the N-gram by the count of its context.

Chapter 2 NLp through the ages

38

The main steps in building and using an N-gram language model are

as follows:

 1. Collect and preprocess a large corpus of text for

training.

 2. Tokenize the text into words or subwords.

 3. Build a frequency table of N-grams and their counts

in the training data.

 4. Estimate the probabilities of N-grams using the

frequency table.

 5. Use the N-gram probabilities to predict the next

word in a given context or to generate new text.

Let us take an example for building an n-gram language model using

lyrics from the song “Imagine” by John Lennon:

"Imagine there's no heaven

It's easy if you try

No hell below us

Above us only sky

Imagine all the people

Living for today

Ah..."

• Step 1: Preprocess and tokenize

imagine, there's, no, heaven

it's, easy, if, you, try

no, hell, below, us

above, us, only, sky

imagine, all, the, people

living, for, today

ah

Chapter 2 NLp through the ages

39

• Step 2: Building the N-grams

Here, bigrams (2-grams) are considered for

simplicity.

["imagine", "there's"], ["there's", "no"], ["no",

"heaven"]

["it's", "easy"], ["easy", "if"], ["if", "you"],

["you", "try"]

["no", "hell"], ["hell", "below"],

["below", "us"]

["above", "us"], ["us", "only"], ["only", "sky"]

["imagine", "all"], ["all", "the"], ["the",

"people"]

["living", "for"], ["for", "today"]

• Step 3: Calculating the probabilities

• We can do this by counting the occurrences of

each bigram.

["imagine", "there's"]: 2 times

["there's", "no"]: 1 time

["no", "heaven"]: 1 time

["it's", "easy"]: 1 time

["easy", "if"]: 1 time

["if", "you"]: 1 time

["you", "try"]: 1 time

["no", "hell"]: 1 time

["hell", "below"]: 1 time

["below", "us"]: 1 time

["above", "us"]: 1 time

["us", "only"]: 1 time

["only", "sky"]: 1 time

Chapter 2 NLp through the ages

40

["imagine", "all"]: 1 time

["all", "the"]: 1 time

["the", "people"]: 1 time

["living", "for"]: 1 time

["for", "today"]: 1 time

• Then calculate the probability of each based on the

occurrences.

P("imagine" | "there's"): 2/2 = 1.0

P("there's" | "no"): 1/1 = 1.0

P("no" | "heaven"): 1/1 = 1.0

P("it's" | "easy"): 1/1 = 1.0

...

Once the bigram probabilities are calculated, they can be used to

generate new text.

For example, start with the seed phrase “Imagine there’s.”

P("imagine" | "there's") = 1.0

Predicted next word: "no"

New phrase: "Imagine there's no"

New Seed phrase: "Imagine there's no"

P("there's" | "no") = 1.0

Predicted next word: "heaven"

New phrase: "Imagine there's no heaven"

New Seed phrase: "Imagine there's no heaven"

P("no" | "heaven") = 1.0

Predicted next word: "it's"

New phrase: "Imagine there's no heaven it's"

Chapter 2 NLp through the ages

41

We can continue running the new phrase through the model again and

again to get more and more predictions. In practice, higher-order n-grams

(e.g., trigrams or higher) may be used to improve text generation quality.

This example illustrates just the basic concept of building an n-gram

language model using song lyrics as input.

 Handling Unknown N-Grams

In the previous example, all bigrams have occurred in the training data,

but in a real-world scenario, you may encounter unseen bigrams. To

handle this, you can use techniques such as smoothing to assign a small

probability to unseen bigrams.

Smoothing, also known as add-one smoothing or Laplace smoothing,

is a technique used to address the issue of zero probabilities for unseen

n-grams in language modeling. In an n-gram language model, when an

n-gram is encountered in the test data that was not present in the training

data, the probability of that n-gram becomes zero in the model. This can

lead to unreliable and unrealistic predictions when generating text.

Smoothing addresses this problem by adding a small constant

value (usually 1) to the count of all n-grams in the training data before

calculating their probabilities. This ensures that even unseen n-grams

receive a nonzero probability, and it prevents the model from assigning

absolute zero probabilities to any possible sequence of words.

To illustrate smoothing, let us look back at the previous example:

["imagine", "there's"]: 2 times

["there's", "no"]: 1 time

["no", "heaven"]: 1 time

["it's", "easy"]: 1 time

["easy", "if"]: 1 time

Chapter 2 NLp through the ages

42

Here it is without smoothing:

P("there's" | "no") = 1/1 = 1.0

P("no" | "heaven") = 1/1 = 1.0

In this case, the probabilities for “there’s” given “no” and “no” given

“heaven” are 1.0, which seems reasonable based on the training data.

However, if we encounter a new bigram in the test data, such as [“no”,

“worries”], the probability for this unseen bigram will be zero since it was

not in the training data.

Let’s look at it with smoothing (add-one smoothing).

Apply add-one smoothing by adding 1 to all bigram counts:

["imagine", "there's"]: 3 times (original count + 1)

["there's", "no"]: 2 times (original count + 1)

["no", "heaven"]: 2 times (original count + 1)

["it's", "easy"]: 2 times (original count + 1)

["easy", "if"]: 2 times (original count + 1)

["no", "worries"]: 1 time (unseen bigram, now has a

non- zero count)

P("there's" | "no") = 2/2 = 1.0

P("no" | "heaven") = 2/2 = 1.0

P("no" | "worries") = 1/2 = 0.5 (with add-one smoothing)

By applying add-one smoothing, the probabilities for unseen n-grams

are no longer zero, and they receive a small probability value. This makes

the model more robust and prevents it from being overly confident about

the probabilities of unseen n-grams.

Smoothing is a widely used technique in language modeling,

especially with small training datasets or when dealing with higher-

order n-grams, where the likelihood of unseen n-grams becomes more

prevalent.

Chapter 2 NLp through the ages

43

N-gram language models are relatively simple to implement and

can provide reasonable results, especially for lower-order N-grams (e.g.,

bigrams or trigrams). However, they have limitations when it comes

to capturing long-range dependencies and understanding the context

beyond a fixed window of N words. To address these limitations, more

advanced models like neural language models have been developed,

which can capture longer dependencies and generate more coherent

and contextually accurate text. Nonetheless, N-gram models remain an

essential concept in NLP and have been used in various applications,

including text generation, spell checking, speech recognition, and

machine translation.

 Neural Language Models
Neural language models are a class of advanced language models used

in NLP that leverage neural networks to learn the statistical patterns and

relationships between words in a large corpus of text. Unlike traditional

N-gram models that have limited context and struggle with capturing long-

range dependencies, neural language models can process sequences of

words with variable length, making them more effective in understanding

the context and generating coherent and contextually relevant text.

Neural language models are typically based on two main architectures:

recurrent neural networks and transformer-based models.

 Recurrent Neural Networks

RNNs are a type of neural network designed to handle sequential data,

making them well-suited for processing sequences of words in natural

language. RNNs have a recurrent structure that allows them to maintain

hidden states, capturing information about the context of previous words.

This context is crucial in language modeling, where the meaning of a

Chapter 2 NLp through the ages

44

word often depends on the words that precede it. One of the most widely

used RNN variants in language modeling is the long short-term memory

(LSTM) network, which is designed to address the vanishing gradient

problem and handle long-range dependencies.

 Transformer-Based Models

Transformers are a revolutionary architecture introduced in the paper

“Attention Is All You Need” by Vaswani et al. in 2017. Transformers employ

self-attention mechanisms to capture dependencies between all words

in a sequence simultaneously, enabling them to process long-range

dependencies more effectively than RNNs. The transformer architecture

has become the foundation for many state-of-the-art language models,

including the widely known BERT and GPT models.

The training process for neural language models typically involves

feeding the model with sequences of words and training it to predict the

next word in a sequence given the preceding words. The model’s weights

are updated during training using backpropagation and gradient descent

to minimize the prediction error. The trained model can then be used

for various NLP tasks, including text generation, machine translation,

sentiment analysis, question-answering, and more.

Recurrent neural networks (RNNs) are bi-directional artificial neural

networks, allowing the output from some nodes to affect subsequent

input to the same nodes. Their ability to use internal state (memory) to

process arbitrary sequences of inputs makes them particularly well-suited

for sequential data, making them effective in capturing the temporal

dependencies and context in natural language.

The main idea behind RNNs is that they maintain hidden states, which

act as memory, to capture information from previous time steps and

pass it along to the next time step. This property enables RNNs to handle

sequences of variable length and maintain context as they process each

word in a sentence.

Chapter 2 NLp through the ages

45

Typical workings of an RNN-based language model include the

following:

• Word embeddings: The word embeddings used for

RNNs must capture the semantic meaning of words

and help the model understand the relationships

between different words. Therefore, methods like

Word2Vec are used.

• Sequence processing: The word embeddings are fed into

the RNN one word at a time in a sequential manner.

At each time step, the RNN takes the current word

embedding and the hidden state from the previous

time step as inputs and produces an output and an

updated hidden state.

• Hidden states: The hidden state at each time step is

updated based on the current word embedding and the

previous hidden state, allowing the RNN to remember

relevant information from previous words.

• Training: During training, the RNN is fed with

sequences of words from a large corpus of text, and it is

trained to minimize the prediction error between the

predicted next word and the actual next word in the

sequence. The training process uses backpropagation

and gradient descent to update the model’s parameters

and optimize its performance.

• Prediction: The output at each time step can be used to

predict the probability distribution over the next word

in the sequence. By using the output and hidden state

at each time step, the model can predict the next word

given the preceding words.

Chapter 2 NLp through the ages

46

RNN-based language models have the advantage of capturing long-

range dependencies in sequences, making them effective in understanding

the context of words in a sentence. However, they also suffer from some

limitations, such as the vanishing gradient problem, which hinders their

ability to capture long-term dependencies effectively.

The vanishing gradient problem is a challenge that arises during the

training of RNNs, especially those with many layers or long sequences. It

occurs due to the nature of the backpropagation algorithm, which is used

to update the model’s weights during training.

In RNNs, the same set of weights is shared across all time steps,

allowing the model to maintain memory of past information and capture

sequential dependencies. When processing long sequences, however,

the gradients (partial derivatives of the loss with respect to the model’s

parameters) can become extremely small as they are repeatedly multiplied

together during backpropagation.

As the gradients become very small, the updates to the model’s weights

during training become negligible. Consequently, the RNN struggles to

learn long-term dependencies and may fail to capture relevant information

from the distant past. This results in the RNN being unable to retain

meaningful context beyond a few time steps, limiting its effectiveness in

capturing long-range dependencies in the input sequences.

The vanishing gradient problem is particularly problematic in

deep RNNs (those with many layers) or when processing sequences of

considerable length. When the gradients vanish, the model’s learning

process slows down significantly, and it may even get stuck in a state where

it fails to make any meaningful progress.

To address this issue, various RNN variants with specialized

architectures have been introduced, such as the long short-term memory (LSTM)

and gated recurrent unit (GRU).

LSTM and GRU architectures include gating mechanisms that

selectively control the flow of information through the network. These

gating mechanisms help RNNs retain and update relevant information

Chapter 2 NLp through the ages

47

over longer time scales, effectively mitigating the vanishing gradient

problem and improving the model’s ability to learn long-term

dependencies in sequential data.

LSTM-based language models are a variant of RNNs. LSTMs use gating

mechanisms to selectively retain and update information in their hidden

states, making them more capable of maintaining relevant context over

longer sequences.

The basic concepts of LSTM-based language models are as follows:

• LSTM structure:

The LSTM cell is the fundamental building block of

the LSTM-based language model. It consists of several

components, including the input gate, forget gate, output

gate, and cell state.

• Cell state and hidden state:

The LSTM maintains two primary states: the cell state

(often denoted as ‘c’) and the hidden state (often denoted

as ‘h’).

The cell state is responsible for capturing long-term

dependencies in the input sequence. It acts as a memory

that stores relevant information from previous time steps.

The hidden state contains the relevant context for the

current time step and is used for making predictions.

• Gating mechanisms:

LSTMs use gating mechanisms to control the flow of

information through the cell state. These gates are

sigmoid-activated neural networks that produce values

between 0 and 1.

Chapter 2 NLp through the ages

48

The input gate determines how much of the new

information should be added to the cell state at the

current time step.

The forget gate determines how much of the previous cell

state should be retained and carried over to the current

time step.

The output gate determines how much of the cell

state should be exposed to the next time step as the

hidden state.

• LSTM computation:

At each time step, the LSTM cell takes the current word

embedding and the previous hidden state as inputs.

It then computes the values of the input gate, forget gate,

and output gate using sigmoid activation functions based

on the inputs and the previous hidden state.

The cell state is updated by combining the output

of the forget gate (to forget irrelevant information)

and the output of the input gate (to add new relevant

information).

The updated cell state is then used to compute the new

hidden state, which becomes the output of the LSTM cell

at the current time step.

The LSTM cell’s output (hidden state) is then used to

predict the probability distribution over the next word in

the sequence.

Chapter 2 NLp through the ages

49

• Training and generation:

During training, the LSTM-based language model is

fed with sequences of words from a large corpus of text

and is trained to minimize the prediction error between

the predicted next word and the actual next word in the

sequence.

Once the LSTM-based language model is trained, it can

be used to generate new text or complete existing text by

predicting the next word given a seed input, similar to the

standard RNN-based language models.

LSTM-based language models have shown significant

improvements in handling long-range dependencies and

capturing context in sequential data. They have become a

standard architecture in various NLP tasks.

GRU-based language models are another variant of

RNNs that address the vanishing gradient problem.

GRUs use gating mechanisms to selectively control the

flow of information through the hidden state, making

them effective in retaining relevant context over longer

sequences.

The following are the basic concepts of GRU-based language models:

• GRU structure:

The GRU cell is the fundamental building block of the

GRU-based language model. It is similar to the LSTM cell

but has a simplified structure with fewer parameters.

The GRU cell consists of several components, including

the reset gate and update gate.

Chapter 2 NLp through the ages

50

• Hidden state:

Similar to LSTM-based language models, the GRU

maintains a hidden state (often denoted as ‘h’a).

The hidden state contains the relevant context for the

current time step and is used for making predictions.

• Gating mechanisms:

GRUs use two gating mechanisms: the reset gate and the

update gate. These gates are sigmoid-activated neural

networks that produce values between 0 and 1.

The reset gate determines how much of the previous

hidden state should be forgotten or reset, allowing the

GRU to selectively update the hidden state based on the

current input and the previous hidden state.

The update gate determines how much of the new

information should be retained and merged into the

hidden state.

• GRU computation:

At each time step, the GRU cell takes the current word

embedding and the previous hidden state as inputs.

It computes the values of the reset gate and update gate

using sigmoid activation functions based on the inputs

and the previous hidden state.

The GRU then computes the candidate activation,

which is a new proposed hidden state that incorporates

information from the current input and the reset

gate’s output.

Chapter 2 NLp through the ages

51

The candidate activation is combined with the previous

hidden state, weighted by the update gate’s output, to

compute the new hidden state at the current time step.

The GRU cell’s output (hidden state) is then used to

predict the probability distribution over the next word in

the sequence.

• Training and generation:

During training, the GRU-based language model is fed

with sequences of words from a large corpus of text and

is trained to minimize the prediction error between the

predicted next word and the actual next word in the

sequence.

Once the GRU-based language model is trained, it can

be used to generate new text or complete existing text by

predicting the next word given a seed input, similar to

other RNN-based language models.

GRU-based language models have shown excellent performance in

capturing long-range dependencies and context in sequential data. They

have become popular alternatives to LSTM-based models due to their

simpler architecture and efficient training process.

While they share some similarities, LSTMs and GRUs have key

differences in their architecture and functionality:

Architecture complexity

• LSTM: LSTM has a more complex architecture

compared to GRU. It includes three gating

mechanisms: the input gate, forget gate, and output

gate. These gates control the flow of information and

decide what to remember, forget, or output at each

time step.

Chapter 2 NLp through the ages

52

• GRU: GRU has a simpler architecture compared to

LSTM. It includes only two gating mechanisms: the

reset gate and the update gate. These gates allow the

GRU to selectively update and retain information in the

hidden state.

Number of parameters

• LSTM: Because of its more complex architecture with

three gating mechanisms, LSTM generally has more

parameters compared to GRU.

• GRU: GRU has fewer parameters compared to

LSTM due to its simpler architecture with two gating

mechanisms.

Gate interactions

• LSTM: In LSTM, the input gate, forget gate, and output

gate interact with each other separately, allowing the

model to independently control the flow of information

through each gate.

• GRU: In GRU, the reset gate and update gate interact

with each other in a more integrated manner. The

update gate acts as a combination of the input gate and

forget gate in LSTM, controlling both updating and

forgetting.

Handling long-term dependencies

• LSTM: LSTM is explicitly designed to capture long-term

dependencies in sequential data. Its architecture with

the input, forget, and output gates allows it to retain

relevant information in the cell state for longer periods.

Chapter 2 NLp through the ages

53

• GRU: GRU is also effective in handling long-term

dependencies but has a simpler gating mechanism,

which may make it more efficient and easier to train in

some cases.

Computation efficiency

• GRU: Because of its simpler architecture and fewer

parameters, GRU may be computationally more

efficient compared to LSTM. This makes GRU a

preferred choice in scenarios where computational

resources are limited.

LSTM and GRU are both effective in addressing the vanishing gradient

problem and capturing long-term dependencies in sequential data.

LSTM’s complex architecture with three gating mechanisms provides a

more fine-grained control over information flow, making it suitable for

tasks requiring precise memory management. On the other hand, GRU’s

simpler architecture and fewer parameters make it an efficient alternative

to LSTM, especially when computational resources are limited. The choice

between LSTM and GRU depends on the specific task, available resources,

and the trade-off between complexity and performance.

 Summary
In this chapter, we discussed the evolution of natural language processing

and how different approaches—linguistic-based, statistical, machine

learning-based—were applied for language modeling over the years. We

also talked about some of the core concepts of NLP such as tokenization,

word embeddings, and n-grams. Finally, we looked at RNN-based

language models and the advantages they provide.

Chapter 2 NLp through the ages

54

While RNN-based language models have made significant

contributions to NLP tasks, they have been partly surpassed by more

recent architectures like transformers. Transformers, especially those

used in models like BERT and GPT, have shown superior performance

in capturing long-range dependencies and have become the de facto

standard for many NLP tasks.

Transformers are the topic of our next chapter.

Chapter 2 NLp through the ages

55© Thimira Amaratunga 2023
T. Amaratunga, Understanding Large Language Models,
https://doi.org/10.1007/979-8-8688-0017-7_3

CHAPTER 3

Transformers
In 2017, Ashish Vaswani et al. from Google Brain and Google Research

proposed a revolutionary new architecture of neural networks for natural

language processing (NLP) and other sequence-to-sequence tasks in their

“Attention Is All You Need” paper. In this paper, Vaswani et al. presented

a new approach that relies heavily on attention mechanisms to process

sequences, allowing for parallelization, efficient training, and the ability to

capture long-range dependencies in data.

This new architecture proved extremely effective and efficient to train,

resulting in transformers having effectively replaced other approaches,

such as RNNs and LSTMs, after their introduction.

At the core of the transformer architecture, and the key to its

efficiency, is the attention mechanism. Therefore, let us look into how

attention works.

 Paying Attention
In terms of neural networks and deep learning, attention is a mechanism

that allows a model to focus on—or “pay attention to”—specific parts of

the input data while processing it. It is inspired by the human cognitive

process of selectively concentrating on certain elements of sensory

information while ignoring others. Attention has proven to be a powerful

tool in various tasks, particularly in NLP and computer vision.

https://doi.org/10.1007/979-8-8688-0017-7_3

56

The initial idea of attention mechanisms dates back to the early

machine learning concepts of the 1990s and has its origins in cognitive

psychology and neuroscience, where researchers studied how humans

selectively focus on specific information while processing sensory input

and how that behavior can be utilized in machine learning models.

One of the notable early works that utilized attention mechanisms

was the work “Neural Turing Machine” by Graves et al. (2014), which

introduced a differentiable memory addressing mechanism that allows

neural networks to access external memory using attention. An application

of attention used with computer vision was shown by Xu et al. in “Show,

Attend and Tell: Neural Image Caption Generation with Visual Attention”

in 2015, which used attention to improve image captioning by focusing on

different parts of an image while generating each word of the caption.

Attention mechanisms gained prominence with the development

of sequence-to-sequence models. In tasks such as machine translation,

the model needs to capture long-range dependencies between the

input and output sequences. “Neural Machine Translation by Jointly

Learning to Align and Translate” by Bahdanau et al. (2015) introduced the

attention mechanism in the context of machine translation. This attention

mechanism allowed the model to align different parts of the source and

target sentences.

In 2017, Vaswani et al., in their “Attention Is All You Need” paper,

further improved the concept by introducing self-attention, scaled dot

product, and multihead attention mechanisms.

The attention mechanism works by enabling the model to focus on

the most relevant information while generating the output by assigning

different weights to different parts of the input sequence. Figure 3-1 shows

a visualization of an example of learned dependencies from an attention

module of a transformer model.

Chapter 3 transformers

57

Figure 3-1. A visualization of an example learned dependencies from
an attention module of a transformer model. Source: “Attention Is All
You Need” by Vaswani et al.

These long-distance relationships learned during the training phase

allow the model to focus on what is important in a sequence as well as

predict the next element in a sequence. Figure 3-2 shows a visualization of

how next-word dependencies can be derived.

Chapter 3 transformers

58

Figure 3-2. A visualization of how next-word dependencies can be
derived. Source: “Attention Is All You Need” by Vaswani et al.

The typical attention mechanism has three main components: the

queries (Q), keys (K), and values (V).

Query (Q)

• The query vector represents the current element for

which attention is being computed.

• It is a learned vector that captures the properties or

features of the current element.

Key (K)

• The key vectors represent other elements in the

sequence.

• They are also learned vectors that encode the

properties or features of these other elements.

Chapter 3 transformers

59

Value (V)

• The value vectors hold information or content

associated with each element in the sequence.

• They are used to compute the weighted sum of values

based on attention scores.

To build the attention scores, the following functions are applied to the

components.

Attention scores

• Attention scores quantify the relevance or similarity

between the Query vector and the Key vectors.

• They are typically computed using the dot product

between the Query and Key vectors.

Softmax function

• The softmax function is applied to the attention scores

to obtain attention weights.

• The softmax operation converts the scores into a

probability distribution, ensuring that the weights sum

up to 1.

Weighted sum (context vector)

• The attention weights obtained from the softmax

operation are used to compute a weighted sum of the

Value vectors.

• The weighted sum is the context vector, which captures

the contribution of each element to the current

element’s representation.

Chapter 3 transformers

60

Figure 3-3 illustrates a simplified view of this workflow.

Figure 3-3. The attention mechanism workflow

These components work together to compute attention scores that

determine how much each element contributes to the representation of

the current element. The context vector obtained through the weighted

sum of Value vectors reflects the importance of different elements in the

sequence relative to the current element.

To better understand the attention mechanism workflow, let us look at

a simplified code example of how attention scores are calculated. We will

use Python for this.

We will need Numpy and Scipy libraries in Python for this.

import numpy as np

from numpy import array

from numpy import random

from scipy.special import softmax

Chapter 3 transformers

61

We will start by defining the embeddings of four words. In practice,

these word embeddings are calculated. But for simplicity we will define

them manually here.

word_1_em = array([1, 1, 0])

word_2_em = array([0, 1, 1])

word_3_em = array([1, 0, 1])

word_4_em = array([0, 0, 1])

We will stack these together to get the word matrix.

words = np.stack((word_1_em, word_2_em, word_3_em, word_4_em))

print(words)

Output:

[[1 1 0]

 [0 1 1]

 [1 0 1]

 [0 0 1]]

Next, we will initialize the weight matrices for queries, keys, and values.

The word embeddings will be multiplied with these to generate the query,

key, and value matrices in the next step. In practice, these weights will be

learned by the model during training. Here we are initializing them with

random values for simplicity.

W_Q = random.randint(3, size=(3, 3))

W_K = random.randint(3, size=(3, 3))

W_V = random.randint(3, size=(3, 3))

Now we can generate the query, key, and value matrices using matrix

multiplication.

Q = words @ W_Q

K = words @ W_K

V = words @ W_V

Chapter 3 transformers

62

Note the @ operator is used for matrix multiplication in python. It
was introduced in python 3.5.

We then calculate the score values for the queries against all the key

vectors, again using matrix multiplication.

scores = Q @ K.transpose()

The score values are then passed to the softmax function to calculate

the weight values. Typically, at this step, the score values are divided by

the square root of their dimensionality before being passed to the softmax

function. This is done to overcome the vanishing gradient problem. This

approach is known as the scaled dot product. We will discuss it in detail in

the next section.

weights = softmax(scores / K.shape[1] ** 0.5, axis=1)

Finally, the attention values for the words can be calculated using

these weights.

attention = weights @ V

print(attention)

Output:

[[3.11697171 1.70806649 1.86853077]

 [2.97681807 1.62234515 1.91717725]

 [2.98420993 1.74276532 1.94358637]

 [2.59605139 1.68473833 2.12315889]]

The complete code for this example looks like this:

import numpy as np

from numpy import array

from numpy import random

from scipy.special import softmax

Chapter 3 transformers

63

setting the seed for the random functions, allowing us to

reproduce the values

random.seed(101)

defining word embeddings of 4 words

word_1_em = array([1, 1, 0])

word_2_em = array([0, 1, 1])

word_3_em = array([1, 0, 1])

word_4_em = array([0, 0, 1])

stacking all the words to get a single word matrix

words = np.stack((word_1_em, word_2_em, word_3_em, word_4_em))

print(words)

randomly initialize the weight matrices for queries, keys,

and values

W_Q = random.randint(3, size=(3, 3))

W_K = random.randint(3, size=(3, 3))

W_V = random.randint(3, size=(3, 3))

generating the query, key, and value matrices

Q = words @ W_Q

K = words @ W_K

V = words @ W_V

calculating the scores for the queries against all

key vectors

scores = Q @ K.transpose()

computing the weights using softmax operation

weights = softmax(scores / K.shape[1] ** 0.5, axis=1)

computing the attention by a weighted sum of the

value vectors

Chapter 3 transformers

64

attention = weights @ V

print(attention)

The attention mechanism enables the model to capture relationships

and dependencies between elements and is a fundamental building block

in sequence modeling tasks.

 The Transformer Architecture
The paper “Attention Is All You Need” explains that while recurrent neural

network (RNN) architectures such as long short-term memory (LSTM)

and gated recurrent networks (GRN) have firmly established at the time

as the de facto approaches for sequence modeling tasks such as language

modeling and machine translation, progress to push their capabilities

further has been slow due to some fundamental limitations of such

architectures. RNN-based models have limited parallelization options

because they naturally require sequential computing.

The transformer architecture overcomes this limitation by forgoing

any recurrent components and instead relying entirely on attention

mechanisms. ConvS2S and ByteNet models, which were used for

sequence-to-sequence modeling prior to transformers, require an

increasing number of operations to calculate long-range dependencies as

the distance between the elements increases. The number of operations

in ConvS2S increases linearly and logarithmically in ByteNet with the

distance. In transformers, with self-attention, this can be reduced to a

constant number of operations.

Self-attention, also known as intra-attention, is a generalized version

of traditional attention mechanisms that relate different positions of a

single sequence to build a representation of the sequence. By using self-

attention, the transformers architecture is able to both parallelize the

operations as well as improve the performance of single operations.

Chapter 3 transformers

65

Figure 3-4 shows the architecture of a transformer.

Figure 3-4. The transformer architecture

The following are the components of the transformer architecture:

• Tokenizers, which convert text into tokens

• Embedding layers, which convert tokens into

semantically meaningful representations

Chapter 3 transformers

66

• Transformer layers, which carry out the reasoning

capabilities, and consist of attention and multilayer

perceptron (MLP) layers

The transformer layers can be of two types: encoder and decoder.

The original architecture of Vaswani et al. used both encoders and

decoders. Some later variations of the transformer model used one or the

other, such as generative pre-trained transformer(GPT) models, which

are decoder-only, while bidirectional encoder representations from

Transformers (BERT) models are encoder-only.

 The Encoder
Transformers typically use byte pair encoding to tokenize the input. Unlike

many other NLP architectures that use traditional word embeddings

like Word2Vec or GloVe, transformer models are unique in using a

combination of token embeddings, positional encodings, and other

specialized embeddings (such as segment embeddings in BERT) to

effectively capture both content and sequential context. In more recent

variants of transformers (such as GPT-3 and beyond), the concept of

subword embeddings and byte pair embeddings has gained prominence.

These embeddings enable the model to handle out-of-vocabulary words

and provide a more fine-grained representation of words by breaking them

down into smaller units.

The encoder, shown in Figure 3-5, is a stack of N identical layers. In the

implementation of the original paper, this was set to 6 layers (N=6). Each of

these layers is composed of two sublayers, which are as follows:

• The first is a multihead self-attention mechanism.

• The second is a fully connected feed-forward network

(multilayer perceptron) consisting of two linear

Chapter 3 transformers

67

transformations with rectified linear unit (ReLU)

activation in between.

Figure 3-5. The encoder

The N layers of a transformer encoder apply the same linear

transformations—with each layer employing different weight and bias

parameters—to all the words in the input sequence. Each of the two

Chapter 3 transformers

68

sublayers has a residual connection around them and is succeeded by a

normalization layer.

The encoder’s main goal is to capture relevant information from the

input sequence and create a higher-level representation that can be used

by downstream tasks or passed to the decoder for generating output

sequences.

As the transformer architecture does not use recurrence, it inherently

cannot capture information about the relative positions of the words in the

sequence. To overcome this, the positional information has to be injected

into the input embeddings, which is done by introducing positional

encodings.

The positional encoding vectors have the same dimension as the

input embeddings. These are generated using sine and cosine functions of

different frequencies. Then, they are summed to the input embeddings in

order to inject the positional information.

 The Decoder
The decoder, shown in Figure 3-6, is a stack of N identical layers. In the

implementation of the original paper, this was set to 6 layers (N=6). Each of

these layers is composed of three sublayers, which are as follows:

 1. The first sublayer receives the output of the previous

decoder stack. It then augments it with positional

information and implements multihead self-

attention over it. The decoder is designed to attend

only to the preceding words, as opposed to the

encoder, which is designed to attend to all words

in the input sequence, disregarding their position

in the sequence. Thus, the prediction for a word

at a given position will only depend on the known

outputs for the words that come before it in the

Chapter 3 transformers

69

sequence. This is achieved by introducing a mask

over the values that are produced by the scaled

multiplication of the Q and K matrices (Query and

Key metrics we discussed in attention mechanisms)

in the multihead attention mechanism of the

decoder.

 2. The second sublayer implements a multihead

self-attention mechanism similar to the one in the

encoder. This multihead mechanism of the decoder

receives the queries from the previous decoder

sublayer with the keys and values from the output of

the encoder, which allows the decoder to attend to

all the words in the input sequence.

 3. The third sublayer implements a fully connected

feed-forward neural network, which is similar to the

one in the encoder.

Chapter 3 transformers

70

Figure 3-6. The decoder

Similar to the encoder, the sublayers on the decoder also have

residual connections around them. These sublayers are succeeded by a

normalization layer similar to the encoder, and positional encodings are

added to the input embeddings in the same way as the encoder.

The output embeddings of the decoder are offset by one position. This,

combined with the masking (in the masked multihead attention layer),

ensures that the predictions for any given position “will depend only on

the known outputs at positions less than i.”

Chapter 3 transformers

71

Along with the transformer architecture, the original paper introduced

two other important concepts: the scaled dot product and multihead

attention.

 Scaled Dot Product
The scaled dot product was introduced to overcome the vanishing gradient

problem. As discussed in the previous chapter, the vanishing gradient

problem occurs when the gradient in backpropagation becomes so small

that it prevents the network from learning further.

Let us look at a simple code example to understand the scaled dot

product.

Note We are using python code for the example.

Suppose we create a normal distribution that has a mean of 0 and a

standard deviation of 100.

a = np.random.normal(0,100,size=(10000))

If we plot the histogram of that distribution, it will look like Figure 3-7.

plt.hist(a)

Chapter 3 transformers

72

Figure 3-7. Histogram of a normal distribution that has a mean of 0
and a standard deviation of 100

If we plot the softmax of the distribution, it will look like Figure 3-8.

plt.plot(softmax(a))

Figure 3-8. Softmax output of the distribution

Chapter 3 transformers

73

Now, assume we use these softmax values for backpropagation. While

the peak values would backpropagate, the other values (which are near

zero) would get lost due to their significantly smaller values, resulting in a

vanishing gradient.

To overcome this, we can scale the original distribution to a standard

deviation of 1 (the original has a standard deviation of 100) by dividing it

by the square root of the dimentionality.

unit_a = a / 100

Plotting the histogram of the original and scaled distributions will look

like Figure 3-9.

fig, (ax1, ax2) = plt.subplots(1, 2)

ax1.hist(a)

ax2.hist(unit_a)

Figure 3-9. The normal and scaled distributions

The histograms are identical except for the scale.

If we now plot the softmax of the two distributions, it would look like

Figure 3-10.

fig, axs = plt.subplots(2, 2)

axs[0, 0].hist(a)

axs[0, 0].set_title('Original Distribution')

Chapter 3 transformers

74

axs[0, 1].hist(unit_a)

axs[0, 1].set_title('Scaled Distribution')

axs[1, 0].plot(softmax(a))

axs[1, 0].set_title('Softmax of Original')

axs[1, 1].plot(softmax(unit_a))

axs[1, 1].set_title('Softmax of Scaled')

Figure 3-10. The normal and scaled distributions with their
softmax output

These scaled softmax values have a higher chance of backpropagating

properly and allowing the model to train successfully.

The complete code for the previous example is as follows:

import numpy as np

import matplotlib.pyplot as plt

from scipy.special import softmax

Chapter 3 transformers

75

from matplotlib import style

plt.style.use('ggplot')

a = np.random.normal(0,100,size=(10000))

plt.hist(a)

plt.plot(softmax(a))

unit_a = a / 100

print(np.std(a))

print(np.std(unit_a))

plt.rcParams['figure.figsize'] = [12, 4]

fig, (ax1, ax2) = plt.subplots(1, 2)

ax1.hist(a)

ax2.hist(unit_a)

plt.rcParams['figure.figsize'] = [12, 8]

fig, axs = plt.subplots(2, 2)

axs[0, 0].hist(a)

axs[0, 0].set_title('Original Distribution')

axs[0, 1].hist(unit_a)

axs[0, 1].set_title('Scaled Distribution')

axs[1, 0].plot(softmax(a))

axs[1, 0].set_title('Softmax of Original')

axs[1, 1].plot(softmax(unit_a))

axs[1, 1].set_title('Softmax of Scaled')

In traditional attention modules, there are dot product and softmax

operations, making them susceptible to the vanishing gradient problem.

As shown, scaling the output of the dot product to have a standard

deviation of 1 makes the softmax output less susceptible to the vanishing

gradient problem. Figure 3-11 shows the steps of the scaled dot product.

Chapter 3 transformers

76

Figure 3-11. Scaled dot product

The input of scaled dot product consists of queries and keys (with

dimension dk) and values (with dimension dv). The dot products will

be computed of the query with all keys, divided each by dk, and finally

applying a softmax function to obtain the weights on the values.

 Multihead Attention
Instead of using a single attention mechanism multihead attention

mechanism linearly projects the queries, keys, and values h times and uses

a different learned projection for each of them. Single attention is then

applied to each of these h projections in parallel to produce h outputs.

These outputs are then concatenated and projected again to produce a

final result. Figure 3-12 shows the multihead attention mechanism.

Chapter 3 transformers

77

Figure 3-12. The multihead attention mechanism

The multihead attention mechanism allows the model to attend to

information from different representation subspaces at different positions,

which is not achievable from a single-head implementation. Figure 3-13

shows an example visualization of how two heads of the same layer have

learned different representations.

Chapter 3 transformers

78

Figure 3-13. Example visualization of how two heads of the same
layer have learned different representations. Source: “Attention Is All
You Need” by Vaswani et al.

With multihead attention, the total computational cost is closer to

a single-head attention with full dimensionality because of the reduced

dimensionality of each head. This improves the training efficiency

massively by allowing parallelism as well as improved efficiency in each

parallel path.

Chapter 3 transformers

79

 Summary
With our understanding of the core concepts of NLP from the previous

chapter, we looked at the transformer architecture and attention

mechanism in this chapter. The attention mechanisms allowed language

models to focus on the important parts of the input sequence. The

transformer architecture took that concept further by focusing entirely on

attention mechanisms to overcome the limitations of RNN-based models.

The introduction of the transformer architecture revolutionized the

NLP field. The efficiency improvements introduced by it are directly

responsible for the emergence of large language models.

Large language models are the topic of our next chapter.

Chapter 3 transformers

81© Thimira Amaratunga 2023
T. Amaratunga, Understanding Large Language Models,
https://doi.org/10.1007/979-8-8688-0017-7_4

CHAPTER 4

What Makes LLMs
Large?
By now you should have a high-level understanding of the concepts of

natural language processing and how the transformer architecture and

attention mechanisms revolutionized the NLP field and how it changed

the way we look at language modeling. Now we are ready to step into our

main topic: large language models.

You might be wondering what makes a large language model. Is an

LLM the same as a transformer? And, more importantly, why do we call

them “large” language models?

Let’s find out.

 What Makes a Transformer Model an LLM
You may see that in many instances of talking about LLMs that the terms

transformer model and large language model are used interchangeably.

However, there is a difference as well as a connection between

transformers and LLMs.

A transformer, as we learned in the previous chapter, specifically

refers to a type of neural network architecture that was introduced in the

Google Brain and Google Research paper “Attention Is All You Need”

by Vaswani et al. in 2017 (https://arxiv.org/abs/1706.03762). This

https://doi.org/10.1007/979-8-8688-0017-7_4
https://arxiv.org/abs/1706.03762

82

is the architecture that uses the attention mechanism and different

arrangements of encoder/decoder blocks for language modeling.

There are variations of the model with encoder-decoder, encoder-only,

or decoder-only in different implementations catering to different

requirements. The capabilities as well as the efficiency of the transformer

architecture has made it the basis for many large language models.

The term large language model generally refers to a language model

that has a large number of parameters and is trained on a massive dataset.

As mentioned, most large language models use some variation of the

transformer architecture. In terms of AI models, parameters are the

aspects of the model that are learned from the training data during the

training process. Typically, the larger the number of parameters, the more

the model can learn. Modern large language models can have hundreds

of billions of parameters. As an example, GPT-3 is estimated to have 175

billion parameters.

Therefore, following factors are what makes a transformer into a large

language model.

 Number of Parameters
One of the defining features of a “large” language model is the number

of parameters it has. More parameters generally mean the model can

learn more complex representations of the data, though it also increases

computational requirements.

 Scale of Data
These models are trained on enormous datasets that can range from

hundreds of gigabytes to terabytes in size. This allows them to learn from a

wide variety of textual contexts.

Chapter 4 What Makes LLMs Large?

83

 Computational Power
Training large language models requires significant computational

resources, often involving specialized hardware like GPUs or TPUs running

in parallel across multiple machines.

 Fine-Tuning and Task Adaptation
Once a large language model is trained, it can be fine-tuned on specific

tasks or datasets to improve its performance in specialized applications.

 Capabilities
Because of their size and complexity, large language models often

display capabilities that surpass smaller models, such as better context

understanding, error correction, and even some level of commonsense

reasoning.

In summary, a transformer becomes a “large language model” when it

is scaled up in terms of parameters, trained on a large and diverse dataset,

and optimized to perform a wide array of language tasks effectively.

It should also be noted that transformers are not the only architecture

that is capable of building large language models. Recurrent neural

network (RNN) models such as long short-term memory (LSTM) networks

as well as convolutional neural network (CNN) models are capable of

creating large language models. However, because of the groundbreaking

performance as well as the training efficiency demonstrated by

transformer models, the vast majority of LLMs we see today are based on

the transformer architecture.

Chapter 4 What Makes LLMs Large?

84

 Why Parameters Matter
The number of parameters in a neural network model is a critical aspect

that often corresponds to the model’s capacity to learn and represent

information. In the context of transformers, the number of parameters

represents the following:

• Capacity to learn: The number of parameters in a

model often relates to its ability to fit a given dataset.

With more parameters, a model has a greater capacity

to capture nuances and complexities in the data.

• Expressiveness: A large number of parameters allows

the model to represent more intricate functions,

making it possible for the model to generalize better to

unseen data, provided it is trained appropriately and

doesn’t overfit.

• Memory: In the context of transformers, having more

parameters essentially means that the model has a

broader “knowledge” base. For instance, models like

GPT-3 with 175 billion parameters have shown an

ability to remember and generate information across a

vast range of topics.

However, when scaling up a transformer model, there are some

trade- offs that need to be considered.

 Computational Requirements
As the number of parameters increases, so do the computational

requirements for training. Training large models necessitates powerful

GPUs or TPUs and can be time-consuming and expensive.

Chapter 4 What Makes LLMs Large?

85

 Risk of Overfitting
A model with an excessive number of parameters, when trained on limited

data, can memorize the training data (rather than generalizing from it).

This results in overfitting, where the model performs well on the training

data but poorly on unseen data.

 Model Size
Having more parameters means larger model sizes, which can be a

concern for deployment, especially on edge devices or in real-time

applications.

The unique architecture of transformers provides several aspects that

allow the number of parameters to scale up:

• Depth and width: Transformers can have many layers

(depth), and each layer can have a large number of

neurons or attention heads (width). Both factors

contribute to the total parameter count.

• Embedding layers: The initial embedding layer,

which converts input tokens into vectors, can have a

significant number of parameters, especially when the

vocabulary size is large.

• Attention mechanisms: Self-attention mechanisms,

which are central to transformer architectures, involve

multiple weight matrices that contribute to the overall

parameter count.

While increasing the number of parameters generally improves the

model’s performance on many tasks, many neural network models have

a point of diminishing returns. However, recent trends, especially in the

development of models like GPT-3, have shown that continually scaling up

Chapter 4 What Makes LLMs Large?

86

can lead to surprising improvements in performance, enabling capabilities

such as few-shot (where the model is trained to perform tasks with very

little labeled data by leveraging its pre-trained knowledge) or even zero-

shot (where the model is trained to generalize to tasks without having any

labelled data for that specific task) learning. This may indicate that we have

not yet reached the limit of the capabilities of transformer models, and the

current limitations could be computational power and data scale.

 The Scale of Data
The scale of data used to train a model is a crucial component in

determining the model’s effectiveness, especially for transformers like

those used in large language models, because of the following factors.

 Model Generalization

The more data a model is exposed to during training, the better its ability

to generalize to unseen examples. This is particularly true for models

with a large number of parameters. The vast parameter count offers the

potential to learn a lot, but it also brings the risk of overfitting. A massive

dataset can mitigate this risk.

 Diverse Knowledge

A large-scale dataset provides a wealth of diverse information. For a

language model, this means understanding different writing styles, topics,

facts, and even languages.

 Rare Scenarios

Big datasets can capture less common, edge-case scenarios, which might

not be present in smaller datasets. This allows the model to respond to

more niche queries or situations.

Chapter 4 What Makes LLMs Large?

87

Large language models typically use a combination of existing text

corpus as well as sourcing data from the Internet, encompassing websites,

books, articles, and other textual content. The following are some of the

commonly used corpus:

• Common Crawl: This is a vast web corpus collected by

crawling the Internet. It contains petabytes of data from

billions of web pages and is one of the most extensive

datasets available. Models like GPT-3 have been known

to use subsets of Common Crawl.

• Wikipedia: Because of its comprehensive coverage of

knowledge and structured writing, Wikipedia dumps

(in various languages) are frequently used for training

language models.

• BooksCorpus: This contains more than 11,000 books,

totaling about 5 billion words, from diverse genres and

subjects.

• OpenSubtitles: This is a dataset containing subtitles

from movies and TV shows. It’s especially useful for

training conversational models because of its dialogue-

heavy content.

• WebText: Used by OpenAI for training GPT-2, it’s a

collection of web pages amounting to about 40GB of

text data.

• Toronto Book Corpus: This is similar to BooksCorpus

but contains different books, amounting to more than

44 million words.

• English Gigaword: This contains a significant amount of

newswire text data, making it rich in current events and

journalistic language.

Chapter 4 What Makes LLMs Large?

88

• Stanford Question Answering Dataset (SQuAD): While

it’s primarily designed for question-answering tasks,

the dataset, which contains passages from Wikipedia

and associated questions, can be beneficial in training

models to understand context.

• Microsoft MAchine Reading COmprehension Dataset

(MS MARCO): This contains real-world questions and

answers, making it valuable for training models on

practical, user-generated queries.

• Common datasets for translation tasks: These include

Workshop on Machine Translation (WMT) datasets,

European Parliament Proceedings (Europarl), and

United Nations documents (MultiUN) for training

multilingual models.

• LM1B: This is a benchmark dataset for language

modeling containing 1 billion words from the One

Billion Word Benchmark.

• Penn Treebank: While smaller than many other

datasets, this is a staple in linguistic and syntactic

analyses, containing tagged, parsed, and raw Wall

Street Journal data.

Gathering the data from these and other corpora, as well as from

Internet sources, is followed by a data filtering and cleaning step. This is

because not all collected data might be useful. It might have errors, be

redundant, or be unsuitable for training. Proper preprocessing, cleaning,

and filtering are essential to ensure the model learns from high-quality

data. Model-specific per-processing steps such as tokenization are applied

afterward.

However, as with the parameters, scaling up the data brings its own

challenges.

Chapter 4 What Makes LLMs Large?

89

 Computational Overheads

Training on a massive dataset requires high computational power and

memory. Parallel processing, often spanning multiple GPUs or TPUs,

becomes a necessity.

 Storage

Simply storing huge datasets necessitates significant storage solutions,

often distributed across multiple devices or cloud storage solutions.

 Data Bias

Large datasets sourced from the Internet can contain biases present in

the content. This means models can inadvertently learn and perpetuate

these biases.

 Noise

With scale comes noise. Some incorrect or misleading information may

be present in vast datasets, which the model might learn if not properly

cleaned.

Transformers, with their attention mechanisms, are particularly

suited to benefit from large-scale data. The self-attention mechanism can

learn intricate patterns, relationships, and dependencies present in vast

datasets, enabling the model to capture deep semantic relationships in

language. The breakthroughs observed in models like GPT-2 and GPT-3

can be attributed in part to the enormous scale of data they were trained

on. When combined with the models’ large parameter counts, this data

scale allows them to exhibit remarkable language understanding and

generation capabilities.

Chapter 4 What Makes LLMs Large?

90

 Types of LLMs
Large language models can be categorized based on various factors such

as architecture, training objectives, data types, and applications. Let us see

a few of these factors and categorizations.

 Based on the Architecture
As we discussed earlier, there are several architectures that can be used to

build LLMs.

 Transformers

Most of today’s large language models, such as Generative Pre-trained

Transformer (GPT), Bidirectional Encoder Representations from

Transformers (BERT), and Pathways Language Model (PaLM), are based

on the Transformer architecture.

 Recurrent Neural Networks

Older language models often used recurrent neural networks (RNNs) or

variations like long short-term memory (LSTM) and gated recurrent units

(GRUs), although these are less common for very large models because of

scaling limitations.

 Convolutional Neural Networks

Although less common for language tasks, some models have employed

CNN architectures for text classification and other NLP tasks.

Chapter 4 What Makes LLMs Large?

91

 Based on the Training Objective
The training objectives of large language models can vary based on the

specific tasks they are designed to perform or the kinds of abilities they

are expected to possess. A single model may have one or more training

objectives.

• Autoregressive models: Like GPT, these models generate

one word at a time and use previously generated words

as context for future words.

• Autoencoding models: BERT is an example that is

trained to predict masked-out words in a sentence, and

it processes the entire sequence at once.

• Sequence-to-sequence (Seq2Seq) models: These

are often used for translation, summarization, and

other tasks where both input and output can be of

variable lengths. Examples include OpenNMT and

Tensor2Tensor (T2T).

• Hybrid models: Some models, like XLNet, combine

elements of both autoregressive and autoencoding

approaches.

Let us look into few of these categories in detail.

 Autoregressive Models

Autoregressive models are models trained to generate text one token

(usually a word or a subword) at a time. They leverage the concept of

autoregression, where the prediction of each new token is conditioned on

the previously generated tokens.

The following are some key features of autoregressive models.

Chapter 4 What Makes LLMs Large?

92

Sequential Generation

Autoregressive models generate text in a left-to-right manner, predicting

one token at a time based on the tokens that have come before it. This is in

contrast to “autoencoder” models like BERT, which predict missing words

in an entire sequence in parallel.

Contextual Understanding

Because they rely on previously generated text, autoregressive models are

good at maintaining context in a conversation or text. This makes them

suitable for tasks such as dialogue generation, storytelling, and even code

writing.

Long-Range Dependencies

The architecture of these models, especially transformer-based ones like

GPT, is capable of handling long-range dependencies in the text, allowing

them to generate more coherent and contextually relevant text over

extended sequences.

Causal Relationship

Autoregressive models maintain a causal relationship in the sequence

where each token is generated based on a fixed history of preceding tokens

and not future tokens. This is a crucial feature for many natural language

understanding and generation tasks.

Chapter 4 What Makes LLMs Large?

93

The training process of an autoregressive model typically follows

these steps:

• Data preprocessing: The model is usually trained on

large datasets that are tokenized into smaller pieces,

like words or subwords.

• Masking and loss function: During training, the

model uses a mask to ensure that the prediction for a

particular token does not have access to future tokens

in the sequence. The most common loss function

used is the cross-entropy loss between the predicted

probabilities and the actual tokens.

• Parameter optimization: The model’s millions

or billions of parameters are adjusted through

backpropagation and optimization algorithms like

Adam to minimize the loss function.

• Fine-tuning: Autoregressive models are often fine-

tuned on specific tasks or datasets to make them more

effective for specialized applications.

Autoregressive LLMs have many applications, such as the following:

• Natural language generation: This includes everything

from chatbots to creative writing.

• Machine translation: Some autoregressive models are

fine-tuned for translating between languages.

• Summarization: You can generate concise summaries

of long documents.

• Question answering: You can generate answers to

questions based on context or a given passage.

Chapter 4 What Makes LLMs Large?

94

• Code generation: Some specialized autoregressive

models can write or complete code based on a prompt.

• Other NLP tasks: Though not strictly generative tasks,

models like these can be adapted for classification,

sentiment analysis, and more by adding specialized

layers or training setups.

However, autoregressive models do have some limitations, a few of

which are as follows:

• Speed: Since autoregressive models generate text one

token at a time, they can be slower for generation tasks

compared to parallel models.

• Repetition: These models can sometimes get stuck in

loops and generate repetitive text.

• Lack of revision: Once a token is generated, it can’t be

changed, which may lead to errors accumulating in

long sequences.

• Context limit: There’s a maximum sequence length

beyond which the model can’t maintain context, due to

architectural limitations.

 Autoencoding Models

Autoencoding language models are designed to generate a fixed-size

representation or “encoding” for a given input text. Unlike autoregressive

models, which predict one word at a time based on previous words,

autoencoding models take an entire sequence of words as input and

predict some of those words in parallel.

The following are some key features of autoencoding models.

Chapter 4 What Makes LLMs Large?

95

Bidirectional Context

These models consider both the preceding and following words to predict

a target word, thereby offering a bidirectional context. This is different

from autoregressive models, which use only preceding words.

Masked Language Modeling

In training, some words in the input sequence are randomly masked out,

and the model tries to predict them.

Fixed-Size Encoding

These models produce a fixed-size vector representation of the entire input

sequence. This vector can capture the semantic meaning of the input and

can be used for various downstream tasks.

Parallelism

Because masked words are predicted in parallel, training and inference

with autoencoding models can be faster for certain types of tasks

compared to autoregressive models.

The training of an autoencoding model typically involves the following:

• Data preprocessing: Text is tokenized into subwords or

words, and some tokens are randomly replaced with a

[MASK] token or other special tokens.

• Objective function: The model is usually trained using a

cross-entropy loss function, where it tries to minimize

the difference between the predicted probabilities for

the masked words and the actual words.

Chapter 4 What Makes LLMs Large?

96

• Backpropagation: Gradients are computed based on

the loss, and the model’s parameters are updated using

optimization algorithms like Adam.

• Fine-tuning: Similar to autoregressive models,

autoencoding models can be fine-tuned on specific

tasks to adapt their capabilities.

The applications of autoencoding LLMs include the following:

• Text classification: The fixed-size encoding can be used

to classify text into various categories.

• Named entity recognition: This can identify entities

such as names, places, and organizations in text.

• Question answering: This can be adapted to provide

specific answers based on the question and a given

context.

• Sentiment analysis: This can classify the sentiment of a

sentence or document as positive, negative, or neutral.

• Search engines: This can be used to understand and

rank documents relevant to a query.

• Summarization: While not as straightforward as using

sequence-to-sequence models, BERT-like models can

still be adapted for text summarization tasks.

Autoencoding models also have certain limitations.

• Token limit: Like autoregressive models, these models

also have a maximum sequence length, beyond which

they can’t process text.

Chapter 4 What Makes LLMs Large?

97

• Lack of coherency: For sequence generation tasks,

autoencoding models don’t naturally generate

coherent and contextually relevant sequences as

effectively as autoregressive models.

• Complexity: These models can be computationally

expensive to train, particularly because the

bidirectional context requires more computational

resources to capture.

• Ambiguity: Sometimes the masked word can have

multiple plausible replacements, making the task

inherently ambiguous. The model is trained to predict

the most likely word, which may not always be the most

contextually appropriate one.

 Sequence-to-Sequence Models

Sequence-to-sequence (Seq2Seq) models are designed to transform an

input sequence into an output sequence, where both the input and output

sequences can have variable lengths. These models are often employed

in tasks like machine translation, text summarization, and speech

recognition.

The following are the key features of Seq2Seq models.

Encoder-Decoder Architecture

A typical Seq2Seq model consists of two main components: an encoder

that processes the input sequence and compresses the information into

a fixed-size “context vector,” and a decoder that generates the output

sequence based on this context vector.

Chapter 4 What Makes LLMs Large?

98

Attention Mechanisms

Modern Seq2Seq models often use attention mechanisms to allow the

decoder to focus on different parts of the input sequence for each element

of the output sequence. This is particularly useful for handling long

sequences and for tasks where the alignment between input and output is

complex.

Variable-Length Sequences

Unlike fixed-size autoencoders, Seq2Seq models can handle input and

output sequences of different lengths, making them extremely versatile.

Bidirectional Context in Encoder

The encoder often uses bidirectional layers (e.g., bidirectional LSTMs or

GRUs) to capture the context from both directions of the input sequence.

The training of a Seq2Seq model includes the following:

• Data preparation: In training, pairs of input-output

sequences are needed. For example, in machine

translation, you would have pairs of sentences in two

different languages.

• Teacher forcing: During training, the actual output

from the training dataset (not the predicted output) is

often fed into the decoder in the next time step to guide

learning. This technique is known as teacher forcing.

• Loss function: A common loss function used is the

cross-entropy loss between the predicted output

sequence and the actual output sequence.

Chapter 4 What Makes LLMs Large?

99

• Training algorithms: Optimization algorithms like

Adam or RMSprop are often used to adjust the model

parameters to minimize the loss.

• Fine-tuning: Seq2Seq models can also be fine-tuned for

specific domains or tasks to improve performance.

The following are some of the applications of Seq2Seq LLMs:

• Machine translation: Translating text from one

language to another

• Text summarization: Generating a concise summary for

a long document

• Question answering: Providing a precise answer to a

question based on a given context

• Speech recognition: Converting spoken language into

written text

• Image captioning: Generating textual descriptions

of images

• Dialog systems: Used in chatbots and virtual assistants

for generating conversational responses

The limitations of Seq2Seq models include the following:

• Complexity: The encoder-decoder architecture

and attention mechanisms make these models

computationally intensive to train.

• Data requirements: Seq2Seq models often require large

annotated datasets, especially for complex tasks like

machine translation.

Chapter 4 What Makes LLMs Large?

100

• Long sequences: While attention mechanisms

have alleviated this issue to some extent, handling

extremely long sequences is still challenging due to

computational limitations.

• Lack of interpretability: The attention mechanism

provides some insight, but the models are largely black

boxes, making it hard to understand why they make

specific decisions.

 Hybrid Models

Hybrid language models attempt to combine the strengths of different types of

models or incorporate additional features to improve performance in specific

tasks. While pure autoregressive, autoencoding, or sequence-to- sequence

models are powerful in their own right, each has its limitations. Hybrid

models aim to address these by fusing different architectures or techniques.

The following are some common types of hybrid models.

Autoregressive + Autoencoding

One common approach is to combine autoregressive and autoencoding

models. For example, you could use an autoencoding model like BERT to

generate a fixed-size representation of the input and then feed this into an

autoregressive model like GPT to generate output text. This could be useful

for tasks where you need both a deep understanding of the input and a

coherent output, such as in complex question-answering systems.

Seq2Seq + Attention

While attention mechanisms are commonly used in Seq2Seq models,

advanced hybrid versions might incorporate multiple types of attention

mechanisms or mix attention with other techniques such as reinforcement

learning for better performance.

Chapter 4 What Makes LLMs Large?

101

Incorporating External Knowledge

Some hybrid models are designed to interface with external databases

or knowledge graphs, allowing them to pull in real-world facts when

generating text.

Multimodal Models

These are hybrid models designed to handle multiple types of input (e.g.,

text and images or text and audio). GPT-3, for instance, has been adapted

to generate image captions based on both text prompts and the images

themselves.

Classifier + Generator

In tasks such as sentiment analysis followed by text generation, a

classification model may first determine the sentiment of the input, and

then an autoregressive model could generate a response that aligns with

that sentiment.

Because of their nature, some unique training techniques are used

with hybrid models, such as the following:

• Multi-objective loss function: When you’re combining

different model types, you often have to optimize a

loss function that’s a combination of the loss functions

appropriate for each individual model.

• Two-step training: Sometimes, one part of the model is

trained first, followed by the second part. For example,

an autoencoder could be pre-trained on a large dataset

and then fine-tuned along with an autoregressive

model on a specific task.

• End-to-end training: In some cases, the entire hybrid

model is trained together from scratch, although this

can be computationally expensive.

Chapter 4 What Makes LLMs Large?

102

Some of the unique use cases of hybrid models include the following:

• Advanced question-answering: Hybrid models can

be particularly effective for generating accurate and

contextually relevant answers to complex questions.

• Summarization: Combining the strengths of different

model types could lead to more coherent and factually

accurate summaries.

• Multimodal tasks: When tasks involve multiple types

of data, like text and images, hybrid models can be

particularly effective.

Although they have their benefits, hybrid models have their own set of

limitations.

• Computational complexity: Combining different

architectures can lead to models that are even more

computationally intensive to train and deploy.

• Overfitting: With more parameters and complexity,

there’s an increased risk of overfitting, especially when

not enough data is available.

• Interpretability: As models get more complex, it

becomes increasingly difficult to understand why they

make certain decisions.

• Engineering challenges: Building and maintaining

hybrid models can be more complex and require

specialized expertise.

Because the term hybrid is quite broad, it can be applied to a variety of

architectures and is not limited to the previous examples. The overarching

theme is the attempt to combine different techniques or models to

overcome the limitations of using any single approach.

Chapter 4 What Makes LLMs Large?

103

 Other Training Objectives

Other than the language modeling objectives we discussed earlier, LLMs

may have other training objectives associated with them based on their

intended use. Some of these are as follows:

Text Classification Objectives

• Sentiment analysis: The objective is to classify the

sentiment expressed in a text as positive, negative, or

neutral.

• Topic classification: The model is trained to categorize

texts into predefined topics or classes.

Information Retrieval Objectives

• Document ranking: The objective is to rank a set of

documents based on their relevance to a query.

• Keyword extraction: The objective is to extract

important terms or phrases from larger bodies of text.

Multimodal Objectives

• Image-text association: In multimodal models like CLIP

and DALL-E, the model is trained to understand and

generate associations between text and images.

• Audio-text association: Some models are trained to

transcribe or understand spoken language and its

relationship to written text.

Specialized Objectives

• Named entity recognition (NER): The objective is to

identify named entities such as people, organizations,

locations, etc., in a text.

Chapter 4 What Makes LLMs Large?

104

• Part-of-speech tagging: The model is trained to identify

the part of speech for each word in a sentence.

• Dependency parsing: The objective is to identify

grammatical relationships between words.

• Text generation: Some models are specialized for

creative text generation, including poetry, storytelling,

and more.

Other Objectives

• Few-shot learning: The model is trained to perform

tasks with very little labeled data by leveraging its pre-

trained knowledge.

• Zero-shot learning: The model is trained to generalize

to tasks without having any labeled data for that

specific task, often by understanding the task

description in natural language.

• Multitask learning: The model is trained to perform

multiple tasks simultaneously, often sharing a common

representation to improve performance across tasks.

• Adversarial training: To improve robustness, some

models are trained to withstand adversarial attacks,

where small, carefully crafted changes to the input can

mislead the model.

Different training objectives are often combined to create more

versatile models, and task-specific objectives are often tackled by

fine- tuning a pre-trained general-purpose model.

Chapter 4 What Makes LLMs Large?

105

 Usage-Based Categorizations
Apart from the architecture and the objectives, LLMs can also be broadly

categorized based on their usage and input. The following are a few of

those categories:

Based on Data Types

• Text-based models: Most large language models are

trained primarily on text data.

• Multimodal models: These models are trained on

multiple types of data, like text and images. DALL-E

and CLIP by OpenAI are examples.

• Cross-lingual models: These are trained on text from

multiple languages and can perform tasks across

different languages without needing separate training

for each.

Based on Applications

• General-purpose models: These are designed to handle

a variety of tasks without being specialized for any

particular one. Examples include GPT and BERT.

• Task-specific models: These are fine-tuned versions of

general-purpose models, adapted for specific tasks

such as text classification, sentiment analysis, or

machine translation.

• Domain-specific models: These are trained or

fine-tuned on specialized data from fields such as

healthcare, law, or finance.

Chapter 4 What Makes LLMs Large?

106

• Conversational agents: Some large language models,

like Meena by Google, are designed to improve

conversational abilities for chatbots and virtual

assistants.

• Code generation models: Models like GitHub’s Copilot

are specialized for generating code based on natural

language queries.

Different types of large language models may overlap in their

characteristics. The landscape is continually evolving, with new types and

hybrids appearing as the field progresses.

 Foundation Models
The term foundation models emphasizes the shift in machine learning

from training models for individual tasks to a paradigm where a single,

powerful model can serve as a foundation for a multitude of applications.

Foundation models refer to pre-trained models, typically of

considerable size and capacity, that serve as a base or “foundation” upon

which more specific applications or tasks can be built. While the term can

technically apply to various domains, it’s often used in the context of large-

scale machine learning models, especially in natural language processing.

The following are some key characteristics of foundation models.

 Pre-training on Broad Data
Foundation models are typically trained on vast and diverse datasets to

learn a wide array of patterns, structures, and knowledge. This generalist

pre-training phase is what enables them to serve as a “foundation.”

Chapter 4 What Makes LLMs Large?

107

 Fine-Tuning and Adaptability
Once pre-trained, foundation models can be fine-tuned or adapted to

specific tasks or domains, inheriting the general knowledge from

pre- training and specializing based on new, task-specific data.

 Transfer Learning
The essence of foundation models lies in transfer learning, where

knowledge gained during one task is transferred to improve performance

on a different, yet related, task.

 Economies of Scale
Given the resources required to train large models, it’s often more efficient

to train a single, large foundation model that can serve multiple purposes

rather than training separate models for each specific task.

Large language models are considered foundation models because

they exhibit properties and characteristics that position them as

foundational building blocks for a plethora of applications.

The following are some of the characteristics of LLMs that make them

foundation models.

 General-Purpose Abilities
LLMs are trained on vast and diverse text corpora, enabling them to handle

a wide range of tasks out of the box, from simple text generation to more

complex tasks such as summarization, translation, and

question- answering.

Chapter 4 What Makes LLMs Large?

108

 Fine-Tuning Capabilities
Once pre-trained on a broad dataset, LLMs can be fine-tuned on specific

tasks or domain-specific data, making them adaptable to various

specialized applications.

 Transfer Learning
The knowledge captured by LLMs during their extensive pre-training can

be transferred and utilized in numerous applications, reducing the need

for task-specific data or training.

 Economies of Scale
Training LLMs requires significant computational resources. But once

trained, they can serve countless applications, providing a cost-benefit

when distributed across multiple tasks or domains.

 Rapid Deployment
With LLMs as a foundation, developers can rapidly prototype and deploy

applications. For instance, with just a well-crafted prompt, GPT-3 can

perform tasks that traditionally would require specialized models.

 Interdisciplinary Applications
Beyond text-centric tasks, LLMs have been utilized in areas like code

generation, art creation, and even scientific domains, underscoring their

foundational nature.

Chapter 4 What Makes LLMs Large?

109

 Reduced Training Overhead
Instead of training a model from scratch for every specific task, developers

can leverage the foundational knowledge of LLMs, reducing the data

requirements and computational overhead for many applications.

 Continuous Adaptability
LLMs have the potential to adapt to new information and trends either by

continuous training or by combining them with other models and systems.

 Democratization of AI
Given the right interfaces and platforms, nonexperts can tap into the

capabilities of LLMs, enabling a broader set of users to benefit from AI

without deep technical knowledge.

 Applying LLMs
While having general-purpose abilities, when applying large language

models for a specific task or a domain, often you would need to tune them

for that specific task or domain in order for them to be more effective in

it. This can be done in two ways: using prompt engineering and/or using

fine-tuning.

 Prompt Engineering
Prompt engineering refers to the art and science of crafting effective

input prompts to guide the behavior of large language models, especially

when seeking specific or nuanced responses. As large models like GPT-3

or GPT-4 do not have traditional “task-specific” configurations, the way

Chapter 4 What Makes LLMs Large?

110

you phrase or structure the input prompt can significantly influence the

output. This has been especially noted in zero-shot, few-shot, or many-

shot learning scenarios.

The following are the key aspects of prompt engineering:

• Precision: Crafting prompts that help the model

understand exactly what kind of information or format

you are seeking.

• Context: Providing enough background or context to

guide the model to generate relevant outputs.

• Examples: In few-shot learning scenarios, giving the

model a couple of examples to demonstrate the desired

task can help in eliciting the right kind of response.

• Rephrasing: If a model doesn’t produce the desired

output with a given prompt, rephrasing the question or

request might yield better results.

• Constraints: Specifying constraints in the prompt to

restrict or guide the model’s responses. For instance,

asking the model to “explain in simple terms” or

“provide an answer in less than 50 words.”

In terms of LLMs, the following principles can be used for optimizing

the prompts.

 Explicitness
Being clear and precise in the instruction can help the model grasp the

exact requirement. For instance, instead of asking “Tell me about apples,”

you might say “Provide a 200-word summary about the nutritional benefits

of apples.”

Chapter 4 What Makes LLMs Large?

111

 Examples as Guidance
Providing examples can be a way to demonstrate the expected output.

For instance, if you’re trying to get the model to transform sentences

into questions, you might provide an example: “Transform the following

sentences into questions. Example: ‘It is raining’ becomes ‘Is it raining?’”

 Iterative Refinement
Prompt engineering often involves an iterative process of refining the

input based on the outputs received. If a particular phrasing doesn’t work,

rephrasing or providing additional context can be helpful.

 Controlling Verbosity and Complexity
Directives like “in simple terms,” “briefly explain,” or “in detail” can guide

the length and depth of the model’s response.

 Systematic Variations
Trying systematic variations of prompts helps in understanding the kind of

phrasing that works best for a particular task.

Prompt engineering is extremely important because of the following

factors:

• Optimal outputs: Even with a highly capable model, the

quality of the output often depends on how the input

is framed. Effective prompt engineering ensures you’re

getting the most out of the model.

• Handling ambiguity: Language can be inherently

ambiguous. By refining prompts, users can reduce

ambiguity and guide the model toward the most

relevant interpretation of their query.

Chapter 4 What Makes LLMs Large?

112

• Task customization: Since large models like GPT-3

aren’t trained for specific tasks in the traditional

sense, prompt engineering allows users to effectively

“customize” the model for a wide array of tasks without

needing to retrain it.

There are several techniques that can be employed to engineer

prompts when working with LLMs:

• Prompt templates: Creating templates where only

specific parts of the prompt change can help in

achieving consistency, especially in tasks like data

extraction.

• Prompt concatenation: Sometimes combining multiple

prompts or instructions in a sequence can guide the

model better. For instance, “Translate the following

English text to French. Ensure the translation is suitable

for a formal business setting.”

• Question decomposition: For complex queries, breaking

down the prompt into multiple simpler questions

might yield more accurate answers.

• Prompt priming: Introducing a context or “priming”

the model with a statement can sometimes help. For

example, “Pretend you are a history teacher. Explain

the significance of the Renaissance period.”

Chapter 4 What Makes LLMs Large?

113

Prompt engineering gives several benefits when applying LLMs to

specific tasks:

• Versatility: Through prompt engineering, a single

pre- trained model can be “repurposed” for a wide

array of tasks without the need for fine-tuning.

• Efficiency: It offers a quicker way to adapt the model to

new tasks, especially when compared to retraining or

fine-tuning.

• Customizability: Different users or applications might

have unique requirements, and prompt engineering

provides a way to customize model outputs without

changing the underlying model.

However, there are some limitations and challenges with prompt

engineering as well:

• Inconsistency: Even with an optimized prompt, models

might occasionally produce inconsistent or unexpected

outputs.

• Overhead: Effective prompt engineering can

require extensive trial and error, which might be

computationally or time-expensive.

• Domain limitations: For very niche or specialized tasks,

prompt engineering might not suffice to achieve high

accuracy, and fine-tuning on domain-specific data

might be necessary.

• Trial and error: Finding the right prompt might

require several iterations, especially for complex or

nuanced tasks.

Chapter 4 What Makes LLMs Large?

114

• Overfitting to prompts: If users are too specific or rely

heavily on prompt examples, the model might overfit to

those examples, which can reduce the generality of its

outputs.

• Predictability: Even with good prompts, the inherent

randomness in model outputs means results might not

always be entirely consistent.

Prompt engineering is a blend of understanding the model’s

capabilities, linguistic nuances, and the specific requirements of a

task. As transformer-based models grow in size and capability, prompt

engineering stands out as a crucial skill to harness their potential fully. It’s

an active area of research and experimentation, with both the AI research

community and industry professionals exploring novel strategies to

optimize interactions with these models.

 Fine-Tuning
In certain scenarios, domains, or tasks, prompt engineering alone may not

yield the required results. In such cases model fine-tuning may be needed.

Fine-tuning is the process of adapting a pre-trained large language

model to a specific task or domain, capitalizing on the general knowledge

the model has acquired and tailoring it to be more effective for specialized

applications.

LLMs are initially pre-trained on a vast and diverse text corpora.

During this phase, the model learns language structures, grammar,

facts, reasoning abilities, and even some biases present in the data. This

general training yields a model that’s knowledgeable but not necessarily

specialized in any particular task.

Chapter 4 What Makes LLMs Large?

115

After pre-training, the model can be further trained (or “fine-tuned”)

on a smaller, narrower, task-specific dataset. This dataset is typically

labeled and relates to a specific application, such as sentiment analysis,

question answering, or medical text classification.

This provides several benefits:

• Specialization: While the pre-trained model is a jack-

of- all-trades, fine-tuning tailors it to be an expert in a

particular domain or task.

• Transfer learning: Fine-tuning leverages the general

knowledge gained during pre-training, allowing the

model to achieve strong performance on specific tasks

even with a smaller amount of task-specific data.

• Efficiency: Training a model from scratch on a

specific task might require a vast amount of data and

computational resources. Fine-tuning a pre-trained

model can achieve competitive, if not superior, results

with less data and in less time.

For fine-tuning, you need a labeled dataset corresponding to your

specific task. For instance, if you’re fine-tuning for sentiment analysis,

you’d need a dataset of sentences/paragraphs labeled as positive, negative,

or neutral.

Instead of initializing the model with random weights (as you would

when training from scratch), you start with the weights from the pre-

trained model. You then update these weights using your task- specific data.

A crucial aspect of fine-tuning is selecting an appropriate learning rate.

Often, a smaller learning rate is chosen compared to pre-training because

you want to make smaller adjustments to the already learned weights,

rather than significant changes.

However, when attempting to fine-tune an LLM, several key aspects

needs to be considered.

Chapter 4 What Makes LLMs Large?

116

 Overfitting
Given that LLMs have a massive number of parameters, they can easily

overfit to a small fine-tuning dataset. Regularization techniques, early

stopping, or even using a smaller version of the pre-trained model can

help mitigate this.

 Catastrophic Forgetting
If fine-tuned too aggressively, the model might “forget” some of the

general knowledge it acquired during pre-training. A balanced approach

is necessary to retain the general knowledge while adapting to the

specific task.

 Evaluation
Always evaluate the fine-tuned model on a separate validation or test set to

gauge its performance on the specific task.

Fine-tuning is a powerful mechanism in the transfer learning paradigm

that allows developers to harness the might of LLMs for a wide range

of tasks without the need for vast amounts of labeled data or extensive

training times.

 Summary
In this chapter, we discussed what factors make a transformer model into

a large language model and how factors such as parameter count and the

scale of data affect their capabilities. We talked about how LLMs can be

categorized using different perspectives such as their architecture, training

objectives, and applications. We looked at the concept of foundation

Chapter 4 What Makes LLMs Large?

117

models, and how LLMs possess those characteristics. Finally, we looked

at how prompt engineering and fine-tuning can be used to adapt LLMs to

specific tasks more effectively.

In the next chapter, we will look at several of the popular LLMs, their

architectures, and capabilities.

Chapter 4 What Makes LLMs Large?

119

CHAPTER 5

Popular LLMs
Over the past couple of chapters, we have discussed the history of NLP, its

concepts, and how it evolved over time. We learned about the transformer

architecture and how it revolutionized how we look at language models

and paved the way for LLMs.

Now, with that understanding, we should look at some of the most

influential LLMs in recent years.

Although the field has been around for only a couple of years, the

number of innovations in the LLM space has been massive. With new

and improved models being released frequently and some models being

proprietary in nature, it is not easy to talk about every variation. But here,

we have made a list of some of the most impactful models and their details

that are publicly available.

 Generative Pre-trained Transformer
Generative Pre-trained Transformer (GPT) is the model that popularized

LLMs to the general public. GPT is a family of LLMs released by OpenAI,

an American artificial intelligence research laboratory consisting of the

nonprofit OpenAI Inc. and its for-profit subsidiary, OpenAI LP. The GPT

models are a collection of foundation models based on the transformer

architecture that have been sequentially numbered, referred to as

the “GPT-n” series, with GPT-1 being the first and GPT-4 being the

most recent.

© Thimira Amaratunga 2023
T. Amaratunga, Understanding Large Language Models,
https://doi.org/10.1007/979-8-8688-0017-7_5

https://doi.org/10.1007/979-8-8688-0017-7_5

120

In 2018, OpenAI published an article titled “Improving Language

Understanding by Generative Pre-Training.” In this article, they

introduced the first GPT system, which later became known as GPT-1. The

introduction of the transformer model in 2017 marked the beginning of

pre-trained transformer models, which are generative.

As we learned in the earlier chapters, prior to the introduction of the

transformer model, neural NLP models primarily employed supervised

learning from large amounts of manually labeled data. This reliance

on supervised learning limited their use of datasets that were not well-

annotated. In addition, the limited parallelization of those models

made training extremely large models prohibitively expensive and time-

consuming. Therefore, some languages, such as Swahili or Haitian Creole,

were deemed near impossible to model using those methods because of a

lack of available text for corpus-building.

To overcome these limitations, OpenAI’s GPT model used a semi-

supervised approach, which was the first time such an approach was used

with transformer models. The approach involved two stages:

 1. An unsupervised generative pre-training stage in

which a language modeling objective was used to

set initial parameters

 2. A supervised discriminative “fine-tuning” stage

in which these parameters were adapted to a

target task

The first GPT architecture (GPT-1) used a 12-layer decoder-only

transformer, using 12 masked self-attention heads, with 64-dimensional

states each (for a total of 768), followed by linear-softmax. For the position-

wise feed-forward networks, 3,072-dimensional inner states were used.

Figure 5-1 shows the architecture of GPT-1.

Chapter 5 popular llMs

121

Figure 5-1. The architecture of GPT-1. Source: “Improving Language
Understanding by Generative Pre-Training,” OpenAI

The model used the Adam optimization algorithm rather than the

more commonly used stochastic gradient descent (SGD). The learning rate

was increased linearly from zero over the first 2,000 updates to a maximum

of 2.5×10−4, and annealed to 0 using a cosine schedule. The model used

mini-batches of 64 randomly sampled, contiguous sequences of 512

Chapter 5 popular llMs

122

tokens and was trained for 100 epochs. The model used bytepair encoding

vocabulary with 40,000 merges and residual, embedding, and attention

dropouts with a rate of 0.1 for regularization, also employing a modified

version of L2 regularization with w = 0.01 on all nonbias or gain weights.

Gaussian Error Linear Unit (GELU) was used as the activation function.

Hyperparameter settings from the unsupervised pre-training stage

were reused for the most part in the fine-tuning stage. A 0.1 dropout

rate has been added to the classifier, and a learning rate of 6.25e-5 and a

batchsize of 32 has been used. The model used a linear learning rate decay

schedule with warmup over 0.2 percent of training and a λ value of 0.5.

OpenAI has noted that GPT-1 can sufficiently adapt to most tasks with just

three epochs of fine-tuning.

GPT-1 was trained on BookCorpus, a dataset consisting of the text of

around 11,000 unpublished books scraped from the Internet. BookCorpus

(also known as the Toronto Book Corpus) was introduced in a 2015 paper

by researchers from the University of Toronto and MIT titled “Aligning

Books and Movies: Towards Story-like Visual Explanations by Watching

Movies and Reading Books” as a dataset consisting of free books written by

yet unpublished authors. The dataset consists of around 985 million words,

and the books that comprise it span a range of genres, such as science

fiction, romance, and fantasy. GPT-1 used a subset of the BookCorpus

dataset, which was around 7,000 books and was chosen to contain the

long passages of continuous text that helped the model learn to handle

long-range dependencies. The raw text of the dataset was cleaned using

the FTFY library (a heuristic-based Python library designed by Robyn

Speer at Luminoso that is used for fixing broken Unicode text), followed

by standardization of whitespace and punctuation. The tokenization

was done using the spaCy library, an open-source library for Python and

Cython for part-of-speech tagging, named entity recognition (NER), text

categorization, and dependency parsing, which uses convolutional neural

network models.

Chapter 5 popular llMs

123

GPT-2, the successor of GPT-1, was partially released in February 2019,

which was followed by the release of the full 1.5-billion-parameter model

in November 2019. The reason for the controlled release was concerns

about potential misuse, including generating fake news or malicious

content due to the capabilities displayed by the model. One of GPT-2’s

main strengths is its ability to generate coherent and contextually relevant

text. Given a prompt or partial sentence, GPT-2 can generate complete,

realistic, and contextually appropriate text.

For the training of GPT-2, the CommonCrawl corpus was initially

considered because of its large size. CommonCrawl is a large text corpus

created using web crawling and was commonly used in training NLP

systems. However, it was later rejected as a training dataset as data quality

issues and unintelligible content were found during the initial reviews of

GPT-2 training. Instead, OpenAI created a new corpus, known as WebText,

specifically for training GPT models. Unlike CommonCrawl, WebText was

generated by scraping only pages linked to Reddit posts, with the condition

that the post has received at least three upvotes prior to December 2017,

as opposed to scraping content indiscriminately from the web, which

was done in previous datasets such as CommonCrawl. The scraped data

of WebText was then cleaned, HTML documents were parsed into plain

text, duplicate pages were eliminated, and Wikipedia pages were removed

from the dataset since their presence in many other datasets could have

induced overfitting.

OpenAI first announced GPT-2 in February 2019. However, OpenAI

refused to publicly release the GPT -2’s source code initially in contrast

to GPT-1, which was made available immediately upon announcement.

OpenAI cited that the reluctance was due to the risk of malicious use.

Initial concerns on GPT-2 were its potential ability to generate text that can

be considered obscene or racist or that spammers can use the generated

text to exploit and evade automated filters since the generated text was

usually completely novel.

Chapter 5 popular llMs

124

Because of these concerns, OpenAI opted not to release the fully

trained model for GPT-2 nor detail the corpora it was trained on with the

February 2019 announcement. However, researchers were able to replicate

GPT-2 using the descriptions of OpenAI’s methods in prior publications

and the free availability of the underlying code of earlier models.

OpenGPT-2 was one such replication. It was released in August 2019.

Along with it, a freely licensed version of WebText called OpenWebText was

also released. OpenAI released a partial version of GPT-2 in August 2019.

This version had 774 million parameters, which was roughly half the size of

the full model, which had 1.5 billion parameters.

By November 2019, OpenAI stated that they had not seen strong

evidence of misuse so far, and the full 1.5 billion parameter model was

released in November 2019.

In May 2020, OpenAI announced GPT-3. While architecturally

similar to earlier GPT models, it has higher accuracy. This is attributed

to its increased capacity and greater number of parameters. It uses a

2,048-tokens-long context and then-unprecedented size of 175 billion

parameters, requiring 800GB to store. The model demonstrated strong

zero-shot and few-shot learning on many tasks.

GPT-3 was trained on the following data:

• 60 percent of the data was from a filtered version of

Common Crawl consisting of 410 billion byte-pair-

encoded tokens

• 22 percent of the data was from WebText2, consisting of

19 billion tokens

• 8 percent of the data was from 12 billion tokens of the

Books1 dataset

• 8 percent of the data was from 55 billion tokens from

the Books2 dataset

• 2 percent of the data was from 3 billion tokens from

Wikipedia

Chapter 5 popular llMs

125

Note openaI has not disclosed the origin or the contents of Books1
or Books2 at the time of this writing.

The capabilities of GPT-3 directly lead to the concept of prompt

engineering.

With the success of the GPT-3 model, OpenAI has released a family of

GPT-3 models that can be utilized for different purposes.

Model Name # of Parameters

Gpt-3 small 125 million

Gpt-3 Medium – “ada” 350 million

Gpt-3 large 760 million

Gpt-3 Xl – “Babbage” 1.3 billion

Gpt-3 2.7B 2.7 billion

Gpt-3 6.7B – “Curie” 6.7 billion

Gpt-3 13B 13 billion

Gpt-3 175B – “DaVinci” 175 billion

In March 2022, OpenAI made available new versions of GPT-3 and

OpenAI Codex in its API with edit and insert capabilities under the names

“text-davinci-002” and “code-davinci-002.”

Codex is a variation of the GPT-3 model, fine-tuned for use in

programming applications, which gives the ability to parse natural

language and generate code in response. In March 2023, concerns raised

by the software community caused OpenAI to shut down access to

Codex. The main concerns were whether the code snippets generated by

Codex could violate copyright (in particular, the GPL condition requiring

derivative works to be licensed under equivalent terms) and whether

Chapter 5 popular llMs

126

training on public repositories falls into fair use. The Codex model is now

available to be used only by researchers of the OpenAI Research Access

Program.

In November 2022, OpenAI began referring to the text-davinci

and code-davinci models as belonging to the “GPT-3.5” series. At

the same time, they released ChatGPT, a GPT-3.5 model fine-tuned

for conversations. ChatGPT was notable for allowing users to steer

the conversations to generate the desired content by considering the

succeeding prompts and replies as context.

In April 2023, OpenAI introduced a new variant of its GPT-3.5

series model, known as “GPT-3.5 with Browsing,” building upon the

capabilities of its predecessors text-davinci-002 and code-davinci-002, and

incorporating the ability to access and browse online information leading

to more accurate and up-to-date responses to user queries. The GPT-3.5

with Browsing model was made available to the public in April 2023.

GPT-3 marked the transition of the GPT-n family from open source to

proprietary models. In September 2020, Microsoft announced that it had

licensed exclusive use of GPT-3. While others can still use the public API

to receive output, only Microsoft will have access to GPT-3’s underlying

model. The architecture details and the training dataset used remain

undisclosed.

OpenAI released GPT-4 in March 2023. OpenAI has demonstrated

video and image inputs for GPT-4. However, these features remain

inaccessible to the general public at this time. OpenAI offers the ChatGPT

Plus subscription service, which gives access to a ChatGPT version

powered by GPT-4. Microsoft Bing Chat also uses GPT-4. So far, OpenAI

has declined to reveal any technical information about GPT-4, such as

the size of the model. Experts have, however, speculated that GPT-4 has

around 1.8 trillion parameters across 120 layers and has been trained on 13

trillion tokens.

Chapter 5 popular llMs

127

GPT models have had a massive impact on the NLP field by

popularizing LLMs and their capabilities and triggering the creation of

competitor models, which keep pushing the boundaries of AI.

 Bidirectional Encoder Representations
from Transformers
Bidirectional Encoder Representations from Transformers (BERT) was

introduced in 2018 by researchers at Google Jacob Devlin et al. in their

paper titled “BERT: Pre-training of Deep Bidirectional Transformers

for Language Understanding.” Within a short time, BERT became the

baseline for state-of-the-art NLP experimentations, with more than 150

publications citing the model and its improvements.

BERT is an encoder-only transformer model. BERT’s innovation

lies in its ability to capture context from both forward and backward

directions in a sequence, enabling it to create highly contextualized word

representations. Unlike earlier traditional language models that were

unidirectional (predicting the next word given previous words), BERT

predicts missing words in a sentence by considering both the left and right

context, allowing it to capture contextual nuances more effectively.

BERT has used the masked language model training objective for its

pre-training. During training, random words in sentences are masked,

and the model learns to predict these masked words based on the

surrounding context. Its bidirectional nature enables it to predict masked

words effectively. BERT’s input representation involves tokenizing text

into subword units (WordPieces) using the WordPiece tokenizer. This

technique helps with handling out-of-vocabulary words and breaking

down complex words. BERT introduces segment embeddings to

distinguish between different sentences in a document or context. These

segment embeddings are especially useful for tasks where the model needs

an understanding of the relationships between sentences, such as question

Chapter 5 popular llMs

128

answering. BERT’s output embeddings are contextualized, meaning they

capture each word’s context concerning the entire sentence. This context

awareness contributes to its strong performance in understanding nuances

and relationships within the text.

The original English language implementation of the BERT model had

two sizes:

• BERTBASE: 12 encoders, 12 bidirectional self-attention

heads, 110 million parameters in total

• BERTLARGE: 4 encoders, 16 bidirectional self-attention

heads, 340 million parameters in total

The BASE and LARGE models were pre-trained on the Toronto

BookCorpus (800M words) and English Wikipedia (2,500M words).

In October 2019, Google announced that they had started applying

BERT models for English language search queries within the United States.

In December 2019, it was reported that Google Search had adopted BERT

for more than 70 languages. By October 2020, almost every single English-

based query was processed by a BERT model.

 Pathways Language Model
The Pathways Language Model (PaLM) is a transformer-based large

language model developed by Google. The model was first announced

in April 2022 and remained private until March 2023. At the time of this

writing, the PaLM API was made available for developers through a

waitlist, and Google stated that it would be made publicly available later.

The main implementation of PaLM has 540 billion parameters. The

researchers have also built two smaller versions of the PaLM model

with 8 and 62 billion parameters for different tasks. The PaLM model

has demonstrated its capabilities in a wide range of tasks, such as

commonsense reasoning, mathematical reasoning, joke explanation,

Chapter 5 popular llMs

129

code generation, and language translation. When combined with chain-

of- thought prompting (a prompt engineering technique that allows large

language models to solve a problem as a series of intermediate steps

before giving a final answer), PaLM has achieved significantly better

performance on datasets requiring multistep reasoning, such as word

problems and logic-based questions.

In January 2023, Google developed an extended version of the PaLM

540B model called Med-PaLM, which was fine-tuned on medical data

and outperformed previous models on medical question-answering

benchmarks. Med-PaLM became the first AI model to obtain a passing

score on U.S. medical licensing questions. It not only was able to answer

both multiple-choice and open-ended questions accurately but also

provided reasoning and was able to evaluate its own responses.

Google then further extended PaLM using a vision transformer to

create PaLM-E, a state-of-the-art vision-language model that can be used

for robotic manipulation.

In May 2023, Google announced PaLM 2, which is reported to be a 340

billion parameter model trained on 3.6 trillion tokens.

In June 2023, Google announced AudioPaLM for speech-to-speech

translation, which uses the PaLM-2 architecture and initialization.

 Large Language Model Meta AI
Large Language Model Meta AI (LLaMA) is a family of large language

models developed by Meta AI (an artificial intelligence laboratory

belonging to Meta Platforms Inc., formerly known as Facebook, Inc.)

starting in February 2023.

The first version of LLaMA had four model sizes trained on 7, 13, 33,

and 65 billion parameters, respectively. LLaMA’s developers reported that

the 13 billion parameter model’s performance on most NLP benchmarks

exceeded that of the much larger GPT-3, which has 175 billion parameters.

Chapter 5 popular llMs

130

In July 2023, in partnership with Microsoft, Meta announced Llama 2.

Llama 2 had three model sizes with 7, 13, and 70 billion parameters,

respectively. The model architecture remains largely unchanged from

Llama 1 models, but 40 percent more data was used for training.

Compared to GPT-3, LLaMA has these key differences:

• LLaMA uses the SwiGLU activation function instead

of ReLU.

• LLaMA uses rotary positional embeddings instead of

absolute positional embedding.

• LLaMA uses root-mean-squared layer-normalization

instead of standard layer-normalization.

• LLaMA increases context length from 2048 (in Llama 1)

tokens to 4096 (in Llama 2) tokens between.

Meta has released the LLaMA’s model weights to the research

community under a noncommercial license, unlike many other LLMs,

which remain proprietary.

 Summary
What we discussed in this chapter is only a portion (although some

of the most impactful tools) of the LLM landscape. Because some of

these models are proprietary, as well as being extremely new, details of

their inner workings are scarce. We may get to learn more as time goes

on. For the time being, the best way to learn about their capabilities is

to experiment with them. AI model repositories such as HuggingFace

(https://huggingface.co) contains either official or open-source

recreations of the models we discussed with instructions to get you started.

As a rapidly developing area, new architectures, improvements, and

achievements in the LLM field happens daily. We may yet to see the full

capabilities of LLMs.

Chapter 5 popular llMs

https://huggingface.co

131

CHAPTER 6

Threats,
Opportunities, and
Misconceptions
The release of ChatGPT was a significant milestone in AI, not just because

of its groundbreaking capabilities and its pushing of the boundaries of

technology but also because of the unprecedented interest it generated

in the general public. While AI technology components have been part

of day-to-day technology for decades, this level of enthusiasm from the

general public was previously unheard of.

It was not only the technology enthusiasts or the research community

alone. The interest was from people from many other technical and

nontechnical fields as well as from media outlets. This popularity, together

with the fact that the capabilities of ChatGPT were open to the general

public to use, helped it become the fastest-growing consumer software

application in history, which in turn directly led to the widespread

recognition of large language models (LLMs) and an explosion of

competing models from different vendors.

This widespread enthusiasm, as well as the media hype around them,

has caused some misunderstandings and misinterpretations of LLMs and

their capabilities. This has led to some concern, and in some cases fear,

toward LLMs and AI technology in general.

© Thimira Amaratunga 2023
T. Amaratunga, Understanding Large Language Models,
https://doi.org/10.1007/979-8-8688-0017-7_6

https://doi.org/10.1007/979-8-8688-0017-7_6

132

There are some aspects regarding LLMs that pose legitimate concerns

and need to be addressed as the technology progresses and gets applied.

However, from the conversations happening about LLMs, it is clear that

some of the concerns gaining traction are misplaced.

In this book, we have gone through the history, reasoning, techniques,

and various implementations of LLMs. So, with our understanding of

how large language models work, let’s look into some of the concerns,

misconceptions, and opportunities surrounding LLMs.

 LLMs and the Threat of a Superintelligent AI
The capabilities of ChatGPT and its counterparts have mesmerized people.

Its ability to have human-like conversations and the demonstration of

knowledge from a vast set of distinct domains has people considering it

to have superhuman abilities. While many have praised these capabilities

and are enthusiastic to utilize them, it has brought up a deep-rooted fear:

the existential threat from a superintelligent AI.

To understand this better, we must look at the levels of AI.

 Levels of AI
The goal of AI research, as we learned in the first chapter, is to build

machines that have intelligent behavior. The levels of AI refer to different

stages or capabilities of artificial intelligence in that journey. These can

depend on everything from simple, rule-based algorithms to hypothetical

machines that might one day surpass human intelligence in all areas.

These levels are defined to help clarify discussions around AI’s capabilities

and potential future developments and theoretical capabilities.

The main levels of AI are as follows.

Chapter 6 threats, OppOrtunities, and MisCOnCeptiOns

133

Narrow or weak AI
These are AI systems designed and trained for a specific task.

They operate based on a predefined set of rules or models trained on

specific data.

Characteristics:

• Task-specific: Performs well on one task but lacks

versatility

• No consciousness: Operates without understanding,

emotions, or self-awareness

• Needs input: Relies on human-defined parameters

• Examples: Image recognition software, chatbots

tailored to specific services, and algorithms that

recommend videos or songs based on user behavior

Artificial general intelligence (AGI)
AI that has the capability to understand, learn, and perform any

intellectual task that a human can, possessing similar cognitive abilities to

a human.

Characteristics:

• Versatility: Can learn and excel in multiple tasks, not

just the ones it was specifically trained for.

• Learning and adaptation: Can learn new tasks without

being explicitly programmed for them.

• Conceptual understanding: Can understand abstract

concepts, reason through problems, and make

decisions in unfamiliar situations.

• Examples: A theoretical concept that doesn’t yet exist;

often depicted in science fiction

Chapter 6 threats, OppOrtunities, and MisCOnCeptiOns

134

Artificial superintelligence (ASI)
This is AI that surpasses human intelligence, not just in specific tasks,

but in virtually every field, including creativity, general wisdom, problem-

solving, and social intelligence.

Characteristics:

• Superiority: Surpasses the best human brains in

virtually every field

• Autonomous decision-making: Can make decisions and

set its own objectives

• Self-improvement: Has the potential for recursive self-

improvement, where it can improve its algorithms and

structures autonomously

• Examples: Theoretical and doesn’t exist yet; often

the subject of speculative fiction and philosophical

discussions, as its realization could lead to profound

societal changes

When we are talking about AGI or ASI, there are few things we need to

consider.

• Progression: It’s essential to note that the progression

from weak AI to AGI and then ASI isn’t just about

scaling up. Similar to how NLP moved from RNNs to

transformers, this involves foundational advancements

in AI algorithms, understanding, and architecture.

• Timeframe: Predictions about when (or if) we might

achieve AGI or ASI vary widely among experts. Some

believe it’s just a few decades away, while others think

it might take much longer or may never occur at all.

Chapter 6 threats, OppOrtunities, and MisCOnCeptiOns

135

• Ethical and safety concerns: As we move toward more

advanced forms of AI, ethical and safety concerns

intensify. Ensuring that advanced AI aligns with human

values can be controlled and is used ethically becomes

paramount.

Understanding these levels is important as discussions about AI’s

societal impact, ethical considerations, and potential become more

prevalent. Each level presents its challenges, benefits, and implications.

The emergence of an ASI could bring some unprecedented benefits.

• Solving complex problems: Issues like climate change,

disease, or even theoretical physics problems could be

tackled efficiently.

• Technological advancements: Rapid innovation could

occur in fields such as space exploration, medicine,

energy, and more.

• Enhanced human abilities: Through brain-computer

interfaces, humans might merge with AI to some

extent, enhancing our cognitive abilities.

However, alongside these potential benefits, there are some concerns

about existential risks.

 Existential Risk from an ASI
An existential risk is one that threatens the extinction of intelligent life or

the permanent and drastic reduction of its potential.

Chapter 6 threats, OppOrtunities, and MisCOnCeptiOns

136

These are some of the main existential concerns related to ASI:

• Loss of control: Once an ASI system surpasses human

intelligence across the board, controlling or predicting

its actions becomes challenging. If it’s capable of

recursive self-improvement, it might quickly evolve in

ways we can’t foresee or comprehend.

• Misalignment of values: Ensuring that an ASI’s goals

align with human values is a significant challenge. A

small misalignment might lead the ASI to take actions

that are technically in line with its programmed goals

but detrimental to humans.

• Resource competition: ASI might see resources that

humans rely on as useful for its own goals, leading to

competition and potential conflict.

• Weaponization: ASI could be used in warfare or by

malicious actors, leading to unparalleled destructive

capabilities.

• Dependency and de-skilling: Over-reliance on ASI could

lead to humanity losing essential skills or becoming

overly dependent on the technology.

• Ethical and moral concerns: Decisions made by ASI,

especially those affecting human lives, might not align

with our moral and ethical frameworks.

• Economic disruption: ASI could render many jobs

obsolete, leading to economic and social upheavals.

• Existential unease: The mere existence of an entity that

surpasses human capabilities in every domain might

lead to existential unease or a reevaluation of human

purpose and identity.

Chapter 6 threats, OppOrtunities, and MisCOnCeptiOns

137

Apart from these concerns, there are the ethical considerations of the

AI itself: if an AI achieves a superintelligent state, questions about its rights

and the ethical considerations of its treatment arise. Should it be granted

personhood? Would “turning it off” be considered an ethical violation?

Addressing this problem before achieving ASI is crucial because,

post-development, we might not get a second chance to make corrections.

This requires rigorous research in AI alignment, safety protocols, and

ethical guidelines. Some AI researchers advocate for an international

collaboration to ensure that the race to develop ASI prioritizes safety over

speed. The aim is to ensure that if and when ASI is realized, it benefits all of

humanity and doesn’t harm or jeopardize our existence.

 Where LLMs Fit
Because of the demonstrated abilities of current LLMs, many are assuming

them to be ASIs and in turn concerned of the associated existential threats

we discussed earlier.

However, this concern is misplaced as LLMs in their current form

are not at the capability of ASIs. While they represent a significant

advancement in machine learning and natural language processing, they

are not examples of artificial superintelligence.

In fact, current LLMs are not even at the AGI level.

For an AI model to reach the AGI level, it needs to be able to

understand, learn, and perform any intellectual task that a human can.

This means that an AI needs to be able to at least match human cognitive

abilities in every area to be considered an AGI. To be considered an ASI, it

needs to excel in abilities in every cognitive area.

Current LLMs are good language models and great for text generation

and comprehension. But they do not have capabilities beyond that.

However, they can be viewed as steppingstones on the path toward

more advanced AI capabilities.

Chapter 6 threats, OppOrtunities, and MisCOnCeptiOns

138

Here are some of the ways LLMs are helping the AI field as a whole to

move forward:

• Demonstration of scalability: LLMs show that as we

increase model size, data, and compute resources,

performance on a variety of tasks tends to improve.

This suggests that, to some extent, scaling up current

techniques might be a viable path to more capable

AI systems, though it’s uncertain if it will lead

directly to ASI.

• Transfer learning and generalization: LLMs are trained

on diverse datasets and can perform a range of tasks

without task-specific training, showcasing the potential

of transfer learning. The ability to generalize across

tasks is a crucial aspect of AGI and, by extension, ASI.

• Foundational for more complex systems: While

LLMs are primarily designed for text generation

and comprehension, components based on similar

architectures could be integrated into more complex AI

systems that have multimodal capabilities (handling text,

image, video, etc.) or more advanced reasoning abilities.

• Ethical and safety precedents: LLMs provide a testing

ground for ethical and safety concerns related to

AI. Issues like bias in AI outputs, the potential for

misuse, and the challenges in specifying desired

behavior are all apparent even at the LLM level.

Addressing these challenges now helps in preparing for

more advanced AI systems.

• Human-AI interaction: LLMs offer insights into human-

AI collaboration. By using LLMs, we can learn more

about how humans and advanced AI systems might

coexist, collaborate, and communicate in the future.

Chapter 6 threats, OppOrtunities, and MisCOnCeptiOns

139

It’s crucial to differentiate between the capabilities of current LLMs

and the theoretical capabilities of ASI. LLMs, no matter how large, don’t

possess consciousness, self-awareness, or general intelligence that

surpasses human capabilities across all fields. They operate based on

patterns in the data they were trained on and lack true understanding or

reasoning.

The limitations and failures of LLMs can inform AI researchers about

the gaps between current technologies and the desired features of AGI or

ASI. For instance, LLMs’ occasional nonsensical outputs, susceptibility

to adversarial inputs, or inability to reason deeply about complex topics

highlight areas that need significant advancements.

In summary, while LLMs are not close to ASI, they play a role in the

AI research landscape, offering insights, raising important questions, and

pushing the boundaries of what machine learning models can achieve.

They can be viewed as a piece of the puzzle, helping the AI community

understand certain aspects of the journey toward more advanced AI forms.

 Misconceptions and Misuse
While we may not need to be concerned about AI taking over the world

yet, there are some misconceptions regarding LLMs that may cause either

intentional or unintentional misuse.

The following are some of the widely held misconceptions and

misunderstandings about LLMs.

LLMs understand content.

• Misconception: LLMs understand the text they generate

in the same way humans do.

• Reality: LLMs don’t “understand” content. They

generate text based on patterns in the training data but

lack a deep or conscious understanding of the concepts

they discuss.

Chapter 6 threats, OppOrtunities, and MisCOnCeptiOns

140

LLMs are conscious or self-aware.

• Misconception: Due to their advanced capabilities,

LLMs possess consciousness or self-awareness.

• Reality: LLMs are not conscious entities. They process

information and generate outputs without awareness,

emotions, or intent.

LLMs always produce correct information.

• Misconception: Outputs from LLMs are always accurate

and trustworthy.

• Reality: LLMs can produce incorrect, misleading, or

biased information, depending on the prompt and the

patterns in their training data.

LLMs are knowledge models.

• Misconception: LLMs have knowledge on a vast

number of fields; therefore, we can use them as

knowledge models.

• Reality: LLMs are only as good as their training

data, and only able to learn linguistic relationships

from them

Bigger is always better.

• Misconception: Increasing the size of a model will

always lead to better and more accurate results.

• Reality: While larger models often exhibit better

generalization, there are diminishing returns, and other

challenges such as increased computational costs and

potential overfitting can arise.

Chapter 6 threats, OppOrtunities, and MisCOnCeptiOns

141

LLMs can invent novel, advanced knowledge.

• Misconception: LLMs can create or discover new

knowledge, theories, or facts.

• Reality: LLMs generate text based on their training data.

They can’t invent genuinely novel scientific theories or

facts beyond the scope of their training.

LLMs are free from bias.

• Misconception: LLMs provide objective and unbiased

information.

• Reality: Since LLMs are trained on vast amounts of

Internet text, they can and do inherit biases present in

that data.

LLMs can replace all human jobs.

• Misconception: Because of their text generation

capabilities, LLMs will replace all jobs related to

writing, customer service, etc.

• Reality: While LLMs can automate some tasks, many

jobs require human judgment, creativity, empathy, and

context-awareness that LLMs currently lack.

LLMs responses are deliberate or endorsed by their creators.

• Misconception: If an LLM generates a particular

statement, it reflects the beliefs or intentions of its

creators or trainers.

• Reality: LLMs generate outputs based on training

data patterns, without intent. An output doesn’t imply

endorsement by the model’s creators.

Chapter 6 threats, OppOrtunities, and MisCOnCeptiOns

142

All LLMs are alike.

• Misconception: All large language models, irrespective

of their architecture or training data, behave similarly.

• Reality: Different models, training processes, and fine-

tuning can result in varied behavior and capabilities.

Understanding these misconceptions is crucial, especially as LLMs

become more integrated into products, services, and decision-making

processes. Proper education and communication about what LLMs can

and cannot do are essential to harness their potential responsibly.

Researchers have also found that LLMs can suffer from a situation

called hallucinations. These refer to instances where the model generates

information that isn’t accurate, grounded in reality, or present in its

training data. Essentially, the model “makes things up” or provides outputs

that might seem plausible but aren’t factual or real.

There can be many reasons for hallucinations.

• Generalization from training data: LLMs generalize

from their vast training data to answer queries or

generate text. While this generalization is often useful,

it can sometimes lead the model to create outputs that

are not strictly accurate.

• Lack of ground truth: Unlike some other AI models that

have a clear “ground truth” or correct answer (e.g., an

image classifier labeling a picture of a cat), LLMs work

in domains where the truth can be more nebulous. This

makes it challenging to always generate the “correct”

response, especially when the prompt is ambiguous.

• Bias and incorrect information in training data: If the

model’s training data contains misinformation, biases,

or outdated information, the model might reproduce or

even amplify these inaccuracies in its outputs.

Chapter 6 threats, OppOrtunities, and MisCOnCeptiOns

143

• Overfitting or memorization: While LLMs like GPT-3

are designed to generalize rather than memorize,

there’s always a risk that a model might “remember”

and reproduce specific patterns, phrases, or pieces of

information from its training data, even if they aren’t

accurate or relevant to the prompt.

• User prompt influence: The way a user crafts a prompt

can significantly influence the model’s output.

Ambiguous or leading prompts can increase the

likelihood of hallucinated responses.

• No external fact-checking mechanism: LLMs generate

responses based on patterns in their training data and

don’t have the capability to fact-check against external

or up-to-date sources in real time.

To address hallucinations, researchers and developers use techniques

like fine-tuning on more specific datasets, adding human-in-the-loop

review processes, or building external verification systems to cross-check

outputs.

Users should always approach outputs from LLMs with a critical

mindset, especially when using them for tasks that require high accuracy

or have significant real-world implications.

LLMs provide a vast range of positive applications because of their text

generation capabilities, but their power also opens the door to potential

intentional misuse as well. The following are some of the areas that misuse

can happen:

• Disinformation and fake news: LLMs can generate

believable but entirely fictitious news articles or

stories. These can be used to spread false information,

manipulate public opinion, or create political

instability.

Chapter 6 threats, OppOrtunities, and MisCOnCeptiOns

144

• Impersonation: With enough data about a person’s

writing style, an LLM could be used to generate

messages or emails that mimic that individual, leading

to potential fraud or misinformation.

• Automated spam and phishing: LLMs can craft highly

personalized and convincing spam emails, increasing

the likelihood of people falling for phishing schemes.

• Toxic and harmful content: If not properly controlled,

LLMs can produce or amplify harmful, biased, or

offensive content.

• Cheating in education contexts: Students could use

LLMs to automatically generate essays, project reports,

or answers to questions, undermining educational

integrity.

• Unfair competition in content creation: LLMs can be

used to mass-produce articles, blog posts, or other

written content, potentially flooding platforms with

low-cost, generic content and squeezing out human

creators.

• Deepfakes: While deepfakes primarily involve

manipulating videos, the scripts or dialogues for these

videos could be generated by LLMs to make them

sound more convincing.

• Stock market manipulation: By generating fake news

or rumors about companies, LLMs could be used to

manipulate stock prices for financial gain.

• Unwanted data extraction: Users could craftily question

LLMs to retrieve specific information from their

training data, potentially leading to privacy concerns.

Chapter 6 threats, OppOrtunities, and MisCOnCeptiOns

145

• Manipulation in social engineering attacks: Attackers

could use LLMs to craft persuasive messages or

narratives that trick individuals into revealing personal

information or taking actions against their best

interests.

• Intensifying echo chambers: By providing content that

aligns with users’ existing beliefs (based on input data),

LLMs could further entrench individuals in their echo

chambers, exacerbating polarization.

Recognizing these potential misuses is the first step in creating

safeguards. Developers and platforms using LLMs should be aware of

these risks and employ measures to prevent them, such as fine-tuning

models for safety, adding layers of human review, or setting guidelines for

responsible usage.

 Opportunities
Large language models have introduced a myriad of opportunities across

various domains because of their advanced text generation capabilities.

Here are some handful of examples from a wide array of possibilities.

Content creation assistance

• LLMs can help writers generate ideas, structure

content, or even write drafts. And they can assist in

poetry, storytelling, scriptwriting, and other forms

of creative expression to supplement human created

content rather than to replace them.

Chapter 6 threats, OppOrtunities, and MisCOnCeptiOns

146

Education

• Tutoring: LLMs can offer personalized explanations on

a range of topics, helping students understand complex

concepts.

• Language learning: They can assist language learners

by offering translations, explanations, or conversational

practice.

Research and information gathering

• LLMs can summarize large amounts of text, generate

literature reviews, or help researchers explore various

perspectives on a topic.

Business applications

• Customer support: The can automate responses to

frequently asked questions or guiding users through

troubleshooting.

• Drafting emails: The can assist professionals in crafting

well-structured and articulated emails or reports.

Programming and development

• Code generation: Given a human-readable prompt,

LLMs can generate code snippets or even assist in

debugging.

Gaming

• LLMs can be used to generate dialogue for characters,

create dynamic storylines, or even craft entire in-game

worlds based on textual descriptions.

Chapter 6 threats, OppOrtunities, and MisCOnCeptiOns

147

Entertainment

• They can create dialogue for movies, generate plot

ideas, or assist in scriptwriting.

Human-computer interaction

• With LLMs, the interaction between users and software

can become more natural, with the software better

understanding and generating human-like text.

Accessibility

• LLMs can be used to develop advanced chatbots

for individuals who may need companionship or

support, or they can translate complex text into simpler

language for individuals with different cognitive needs.

Cultural preservation

• LLMs trained on diverse datasets can help in

preserving and sharing knowledge about various

cultures, languages, and traditions that might be less

represented online.

Idea generation and brainstorming

• They can assist teams in coming up with creative

solutions, product names, or marketing strategies.

Mental health and well-being

• While not a replacement for professional therapy, LLMs

can be used as interactive journaling tools, offering

responses or reflections based on user input.

While these opportunities are exciting, it’s crucial to use LLMs

responsibly. Ensuring the generated content aligns with human values

is factually accurate (where necessary) and doesn’t unintentionally

Chapter 6 threats, OppOrtunities, and MisCOnCeptiOns

148

propagate biases or misinformation is essential. Moreover, in areas such as

mental health, LLMs should be used with caution, always underlining the

importance of human expertise and intervention.

 Summary
As with the introduction of any new technology, LLMs have given rise to

a set of concerns and perceived threats. Most of these concerns are due

to not understanding what LLMs truly are. However, there are genuine

concerns as well. The capabilities of LLMs can be misused—either

intentionally or not—that may have negative impacts in our day-to-day

lives. As LLMs technologies become more common, it is important to

understand these risks and add safeguards to prevent them.

As we are still at the beginning of the LLM era, we may see new

opportunities, approaches, and entire industries emerge around them in

the near future.

Large language models are a milestone in artificial intelligence

and human ingenuity. It is our responsibility to use them correctly and

rationally to ensure progress and a bright future for all.

Chapter 6 threats, OppOrtunities, and MisCOnCeptiOns

149© Thimira Amaratunga 2023
T. Amaratunga, Understanding Large Language Models,
https://doi.org/10.1007/979-8-8688-0017-7

Index

A
Accessibility, 147
Add-one smoothing, 41, 42
Adversarial training, 104
Artificial general intelligence (AGI),

133, 137
Artificial intelligence (AI), 3

AGI, 133
ASI, 134
democratization, 109
generative AI, 6
landscape, 7
LLMs, 138, 139
ML, 4
model training, 5
narrow/weak AI, 133
optimism, 3
repositories, 130
subfields, 3

Artificial neural networks
(ANNs), 4

Artificial superintelligence (ASI)
benefits, 135
characteristics, 134
considerations, 134, 135

existential risk, 135–137
Attention mechanism, 56, 64

key vectors, 58
query vector, 58
scores, 59, 60
softmax function, 59
value vectors, 59
weighted sum, 59

Audio-text association, 103
Autoencoding models, 91

applications, 96
bidirectional context, 95
limitations, 96, 97
masked language modeling, 95
parallelism, 95
training, 95

Autoregression, 91
Autoregressive models, 91

applications, 93, 94
causal relationship, 92
context understanding, 92
limitations, 94
long-range dependencies, 92
sequence generation, 92
training process, 93

https://doi.org/10.1007/979-8-8688-0017-7

150

B
Backpropagation, 44–46, 71,

73, 93, 96
Bag-of-words (BoW), 25

machine learning
algorithms, 27

representation, 33
size, 32
steps, 25
vocabulary, 25
Word2Vec, 31, 32

application, 33
context/semantics, 32
order of words, 33
vector, 32

Bidirectional Encoder
Representations from
Transformers
(BERT), 90, 127

BookCorpus, 87, 122
Business applications, 146

C
Catastrophic forgetting, 116
ChatGPT, 1, 2, 132
Code generation models, 106
CommonCrawl corpus, 123
Complex systems, 138
Computing Machinery and

Intelligence, 9
Conditional random fields

(CRFs), 14

Content creation assistance, 145
Conversational agents, 106
Convolutional neural networks

(CNNs), 5, 83, 90
Corpus

multimodal, 22
parallel, 22
speech, 22
text, 21
treebanks, 22
types, 21

Cross-lingual models, 105
Cultural preservation, 147

D
Data-driven approaches, 12
Data preparation, 98
Data preprocessing, 95
Decoder, 68
Deep learning, 5
Dependency parsing, 104
Dialog systems, 99
Document ranking, 103
Domain-specific

models, 105

E
Education, 146
Encoder, 66–68, 70
English Gigaword, 87
Entertainment, 147
Explicitness, 110

INDEX

151

F
Few-shot learning, 104
Fine-tuning, 93, 96, 99, 114–116
Foundation models, 106

adaptability, 107
AI, 109
continuous adaptability, 109
deployment, 108
economies of scale, 107, 108
fine-tuning, 107, 108
general-purpose abilities, 107
interdisciplinary applications, 108
pre-training, 106
training, 109
transfer learning, 107, 108

G
Gaming, 146
Gated recurrent units (GRUs), 90
Gating mechanisms, 51, 52
Gaussian Error Linear Unit

(GELU), 122
General-purpose models, 105
Generative adversarial networks

(GANs), 6
Generative language models, 34
Generative Pre-trained

Transformer (GPT),
66, 90, 119

Adam optimization
algorithm, 121

bytepair encoding
vocabulary, 122

GPT-1, 120–122
GPT-2, 123
GPT-3, 124–126
GPT-3.5, 126
GPT-4, 126
GPT-n series, 119
hyperparameter settings, 122
learning rate, 121
OpenAI, 120, 123, 124, 126
semi-supervised approach, 120
supervised learning, 120

GRU-based language
models, 49, 51

H
Hallucinations, 142
Hidden Markov models

(HMMs), 13
Hierarchical feature learning, 5
Histograms, 73
Human-AI interaction, 138
Human-computer interaction, 147
Hybrid models, 91, 100

attention mechanisms, 100
autoregressive/

autoencoding, 100
classifier/generator, 101
external databases/

knowledge, 101
limitations, 102
multimodal models, 101
training techniques, 101
use cases, 102

INDEX

152

I, J
Idea generation and

brainstorming, 147
Image captioning, 99
Image-text association, 103
Intelligent machines, 2, 3
Intra-attention, 64
Iterative refinement, 111

K
Keyword extraction, 103

L
Language model, 19, 34, 36

generative language models, 34
N-gram language models, 35
predictive language models, 35
role, 34

Laplace smoothing, 41
Large Language Model Meta AI

(LLaMA), 129, 130
Large language models (LLMs), 1, 9

AI, 6, 7, 138, 148
aspects, 132
capabilities, 83
ChatGPT, 1
complexity, 111
computational power, 83
computational requirements, 84
concerns, 2, 148
encoder-decoder, 82

fine-tuning, 83
guidance, 111
limitations/failures, 139
misconceptions /

misunderstandings
conscious/self-aware, 140
content, 139
creators/trainers, 141
hallucinations, 142, 143
human jobs, 141
information, 140
knowledge models, 140
knowledge/theories/

facts, 141
misuse areas, 143–145

model sizes, 85, 86
opportunities, 145–147
overfitting, 85
parameters, 82, 84
scale of data, 82

computational overheads, 89
data bias, 89
knowledge, 86
model generalization, 86
noise, 89
scenarios, 86, 88
storage, 89

task adaptation, 83
verbosity, 111

Lemmatization, 19
Linguistics-based

approaches, 11
Linguistics-based NLP systems, 12

INDEX

153

LM1B, 88
Long short-term memory (LSTM),

64, 83, 90
Loss function, 98
LSTM-based language models, 47

cell state, 47
concepts, 47
forget gate, 48
gating mechanism, 47, 53
GRU cell, 49, 51, 53
hidden state, 47, 48, 50
parameters, 52
training, 49

M
Machine learning (ML), 3–5, 15
Machine translation, 15, 17, 18, 25,

28, 35, 43, 44, 56, 93, 99
Masking and loss function, 93
Matrix multiplication, 62
Maximum entropy (MaxEnt), 13
Mental health and well-being, 147
Microsoft MAchine Reading

COmprehension Dataset
(MS MARCO), 88

ML-based NLP systems, 17
Multihead attention

mechanism, 76, 77
Multihead self-attention

mechanism, 66
Multimodal models, 101, 103, 105
Multitask learning, 104

N
Named entity recognition (NER),

96, 103, 122
Natural language generation, 93
Natural language processing

(NLP), 2, 9, 55, 81
concepts, 18

language models, 19
NER, 19
parsing, 19
POS tagging, 19
stemming and

lemmatization, 19
stopwords, 18
tokenization, 18
word embeddings, 19

corpus, 21
ELIZA, 10
linguistics-based, 11, 12
linguistic theories, 12
linguistic theories and

principles, 10
LLMs, 9
ML-based, 16
parsing and syntactic

analysis, 11
performance, 14, 15
probabilistic models and ML

algorithms, 15
research and applications, 15
statistical approaches, 15
supervised and unsupervised

INDEX

154

methods, 14
task, 17
transformation, 11
transformers, 36
turing test, 10
vocabulary, 22, 23
word embeddings, 16

Neural language models, 35, 43
Neural networks, 5
Neural Turing Machine, 56
N-gram language model, 37, 41

building and using, 38
probability, 37
text generation quality, 41

N-gram language models, 13,
35, 36, 43

Noam Chomsky’s theories, 10
Noam Chomsky’s transformational

grammar, 11
Normal and scaled

distributions, 73

O
Objective function, 95
OpenSubtitles, 87
Overfitting, 102, 114, 116, 123, 140

P
Parameter optimization, 93

Part-of-speech (POS)
tagging, 19, 104

Pathways Language Model
(PaLM), 90, 128

Penn Treebank, 88
Positional encoding vectors, 68
Predictive language models, 35
Programming and

development, 146
Prompt engineering, 109

benefits, 113
importance, 111, 112
key aspects, 110
limitations/challenges, 113, 114
systematic variations, 111
techniques, 112

Python, 60

Q
Q and K matrices, 69

R
Recurrent neural networks (RNNs),

36, 43, 44, 83, 90
Regression models, 4
Reinforcement learning, 4
Research and information

gathering, 146
RNN-based language models,

45, 46, 54

Natural language processing
(NLP) (cont.)

INDEX

155

S
Scalability, 138
Scaled dot product, 62, 71, 75, 76
Scaled softmax values, 74
Search engines, 96
Self-attention, 64
Sentiment analysis, 16, 96, 103
Sequence-to-sequence (Seq2Seq)

models, 91, 97
applications, 99
attention mechanisms, 98
bidirectional context, 98
encoder-decoder

architecture, 97
limitations, 99, 100
training, 98, 99
variable-length sequences, 98

Skip-gram, 28
Softmax, 73
Speech recognition, 99
Stanford Question Answering

Dataset (SQuAD), 88
Statistical approaches, 13, 14
Statistical machine translation

(SMT) systems, 14, 16
Statistical methods, 12
Statistical NLP methods, 12
Statistical techniques, 14
Stemming, 19
Stopwords, 18
Subject domains, 1
Subword tokenization methods, 21
Supervised learning, 4, 120

T
Task-specific models, 105
Teacher forcing, 98
Tensor2Tensor (T2T), 91
Text-based models, 105
Text classification, 96
Text generation, 104
Text summarization, 99
Tokenization, 18, 20, 21

NLP, 20
output, 20
and preprocessing, 23
punctuation, 20
Subword tokenization

methods, 21
whitespace, 20
words, 21

Topic classification, 103
Toronto Book Corpus, 87, 122
Traditional attention modules, 75
Training algorithms, 99
Training data, 42
Training objectives, 91

information retrieval
objectives, 103

multimodal objectives, 103
specialized objectives, 103, 104
text classification objectives, 103

Transfer learning, 107, 108, 138
Transformer architecture, 64, 65
Transformers, 44, 55, 66, 71, 81,

83–85, 89, 90
architecture, 65, 68

INDEX

156

attention, 55, 56
components, 65
encoder and decoder, 66
neural networks and deep

learning, 55
visualization, 57

Turing test, 9, 10

U, V
Unsupervised learning, 4

W, X, Y
WebText, 87

Wikipedia, 87
Word2Vec model, 27–31
Word embeddings, 24, 31

continuous
space, 24

dimensionality, 24
generalization, 24
semantic meaning, 24

Word sense disambiguation
(WSD), 14

Workshop on Machine Translation
(WMT), 88

Z
Zero-shot learning, 104

Transformers (cont.)

INDEX

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Preface
	Chapter 1: Introduction
	A Brief History of AI
	Where LLMs Stand
	Summary

	Chapter 2: NLP Through the Ages
	History of NLP
	Formal Grammars
	Transformational Grammar and Generative Grammar
	Parsing and Syntactic Analysis
	Context and Semantics
	Language Understanding
	Knowledge Engineering
	Probabilistic Models
	Hidden Markov Models
	N-Gram Language Models
	Maximum Entropy Models
	Conditional Random Fields
	Large Annotated Corpora
	Word Sense Disambiguation
	Machine Translation
	Information Retrieval
	Statistical Approaches
	Availability of Large Text Corpora
	Supervised Learning for NLP Tasks
	Named Entity Recognition
	Sentiment Analysis
	Machine Translation
	Introduction of Word Embeddings
	Deep Learning and Neural Networks
	Deployment in Real-World Applications

	Tasks of NLP
	Basic Concepts of NLP
	Tokenization
	Corpus and Vocabulary
	Word Embeddings
	Bag-of-Words
	Word2Vec
	Bag-of-Words vs. Word2Vec

	Language Modeling
	N-Gram Language Models
	Handling Unknown N-Grams

	Neural Language Models
	Recurrent Neural Networks
	Transformer-Based Models

	Summary

	Chapter 3: Transformers
	Paying Attention
	The Transformer Architecture
	The Encoder
	The Decoder
	Scaled Dot Product
	Multihead Attention

	Summary

	Chapter 4: What Makes LLMs Large?
	What Makes a Transformer Model an LLM
	Number of Parameters
	Scale of Data
	Computational Power
	Fine-Tuning and Task Adaptation
	Capabilities
	Why Parameters Matter
	Computational Requirements
	Risk of Overfitting
	Model Size
	The Scale of Data
	Model Generalization
	Diverse Knowledge
	Rare Scenarios
	Computational Overheads
	Storage
	Data Bias
	Noise

	Types of LLMs
	Based on the Architecture
	Transformers
	Recurrent Neural Networks
	Convolutional Neural Networks

	Based on the Training Objective
	Autoregressive Models
	Sequential Generation
	Contextual Understanding
	Long-Range Dependencies
	Causal Relationship

	Autoencoding Models
	Bidirectional Context
	Masked Language Modeling
	Fixed-Size Encoding
	Parallelism

	Sequence-to-Sequence Models
	Encoder-Decoder Architecture
	Attention Mechanisms
	Variable-Length Sequences
	Bidirectional Context in Encoder

	Hybrid Models
	Autoregressive + Autoencoding
	Seq2Seq + Attention
	Incorporating External Knowledge
	Multimodal Models
	Classifier + Generator

	Other Training Objectives

	Usage-Based Categorizations

	Foundation Models
	Pre-training on Broad Data
	Fine-Tuning and Adaptability
	Transfer Learning
	Economies of Scale
	General-Purpose Abilities
	Fine-Tuning Capabilities
	Transfer Learning
	Economies of Scale
	Rapid Deployment
	Interdisciplinary Applications
	Reduced Training Overhead
	Continuous Adaptability
	Democratization of AI

	Applying LLMs
	Prompt Engineering
	Explicitness
	Examples as Guidance
	Iterative Refinement
	Controlling Verbosity and Complexity
	Systematic Variations
	Fine-Tuning

	Overfitting
	Catastrophic Forgetting
	Evaluation
	Summary

	Chapter 5: Popular LLMs
	Generative Pre-trained Transformer
	Bidirectional Encoder Representations from Transformers
	Pathways Language Model
	Large Language Model Meta AI
	Summary

	Chapter 6: Threats, Opportunities, and Misconceptions
	LLMs and the Threat of a Superintelligent AI
	Levels of AI
	Existential Risk from an ASI
	Where LLMs Fit

	Misconceptions and Misuse
	Opportunities
	Summary

	Index

